摘要
根据两介质五方程简化模型的基本假设,发展了适用于任意多种介质的体积分数方程。为了捕捉多介质界面,将HLLC-HLLCM混合型数值通量的计算格式推广应用于二维平面和柱几何的多介质复杂流动问题,在高阶精度的数据重构过程中采用斜率修正型人工压缩方法ACM。通过一维、二维多介质黎曼问题算例测试,结果表明:发展的计算格式能够较好地分辨接触间断和激波,间断附近物理量无振荡;对于添加了初始扰动的激波问题,能够有效抑制激波数值不稳定性;使用二维柱球SOD问题和接触间断型黎曼问题检验计算格式对多介质复杂流动问题的适应性。
The volume fraction equations of five-equation-reduced model were studied and numerical scheme was developed in two-dimensional Eulerian frame in planar and cylindrical geometry.To capture material interfaces,Yang′s slope modification of artificial compression method was adopted in MUSCL,PPM and WENO type data reconstruction processes.HLLC-HLLCM hybrid flux was applied in Godunov type scheme to avoid numerical shock instability.For multi-material Riemann problems,numerical results show that the scheme captures shock and contact discontinuities with non-oscillatory character.No numerical shock instabilities growing shows as small perturbations was adding on initial physical variables.SOD problems in cylindrical and spherical geometries and contact-type two-dimensional Riemann problem were studied.
作者
薛创
李馨东
孙文俊
叶文华
彭先觉
XUE Chuang;LI Xingdong;SUN Wenjun;YE Wenhua;PENG Xianjue(Institute of Applied Physics and Computational Mathematics,Beijing 100094,China)
出处
《计算物理》
CSCD
北大核心
2021年第3期257-268,共12页
Chinese Journal of Computational Physics
基金
国家自然科学基金(11902042,11671048)
中国工程物理研究院创新发展基金(CX20200026)资助项目
。