期刊文献+

基于均方根和相关熵的测量数据筛选及应用 被引量:1

Screening and Application of Measurement Data Based on Root Mean Square and Related Entropy
下载PDF
导出
摘要 针对某型缸盖凸轮轴轴承盖非连续安装面整体加工平面存在常值性系统误差的问题,对30件同一铝合金缸盖工件平面度测量数据的均方根误差和相关熵估计进行统计分析;利用面型的评价标准,对平面测量值进行筛选,识别出能够反映整体常值性系统误差的数据。依据加工轨迹,对轴承盖安装面的五列分别进行加工补偿。对同列多面采用同一补偿值进行高度补偿,根据同列各面测量数据相对于最小二乘平面的波动大小分配每个面的补偿权重系数。实验结果表明,用此方法进行加工补偿后,发动机凸轮轴承盖安装面的整体偏差减小60%,加工精度得到显著改善。 Aiming at the problem of constant systematic errors in the overall machining plane of a certain type of cylinder head camshaft bearing cover discontinuous mounting surface,the root mean square error and related entropy estimation of the flatness measurement data of 30 pieces of the same aluminum alloy cylinder head workpiece are statistically analyzed;Using the evaluation criteria of the surface shape to filter the plane measurement values and identify the data that can reflect the overall constant system error.According to the processing trajectory,the five rows of the bearing cap mounting surface are respectively processed and compensated.The same compensation value is used for height compensation for multiple faces in the same column,and the compensation weight coefficient of each face is allocated according to the fluctuation of the measured data of each face in the same column relative to the least square plane.The experimental results show that after processing compensation with this method,the overall deviation of the engine cam bearing cover mounting surface is reduced by 60%,and the processing accuracy is significantly improved.
作者 段子誉 姚振强 DUAN Zi-yu;YAO Zhen-qiang(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《组合机床与自动化加工技术》 北大核心 2021年第8期85-89,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家科技重大专项(2019ZX04027-001)。
关键词 随机误差 均方根误差 相关熵 同列同值补偿 轴承盖安装面 random error root mean square error correlation entropy same row and same value compensation bearing cover mounting surface
  • 相关文献

参考文献15

二级参考文献82

共引文献92

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部