期刊文献+

复杂环境下课堂多人状态检测算法研究 被引量:6

Research on multi-person detection algorithm in classroom in complex environment
下载PDF
导出
摘要 新冠肺炎疫情背景下课堂多人佩戴口罩及姿态识别问题,提出了基于YOLO和OpenPose模型的课堂多人状态检测算法。提出的Efficient-YOLO模型,通过采用CBAM注意力模块、SPNET-NEW模块,解决了多人遮挡和无规则化目标的口罩佩戴检测精度问题。此外,提出了一种轻量化的Class-OpenPose模型检测学生上课姿态,该算法在OpenPose模型基础上,使用ShuffleNetV2-NEW对传统模型在底层特征提取方面进行改进,实现了复杂环境下关键姿态点的实时准确检测。实验表明,在课堂多人异常状态检测任务中,Class-OpenPose模型平均准确率高于传统模型,为79.0%,检测速度达到13.5 F/s;Efficient-YOLO口罩识别模型达到83.1%的平均准确率,检测时间仅需31.54 ms,为课堂学生状态检测提供了不错的算法思路。 Aiming at the problem of multi-person wearing masks in the classroom and gesture recognition in COVID-19, this paper presents a multi-person state detection algorithm, based on the YOLO and OpenPose models. The Efficient-YOLO model proposed in this paper uses the classical CBAM attention and SPNET-NEW modules to deal with the problems of multi-person occlusion and irregular targets. In addition, this paper presents a lightweight Class-OpenPose model to detect the students’ posture. Based on the OpenPose model, our proposed algorithm uses ShuffleNetV2-NEW to improve the traditional model in terms of low-level feature extraction, and extracts correct key posture points in complex environments and in real-time. Experiments show that in the multi-person abnormal event detection task, the average accuracy of the Class-OpenPose model is 79.0% that is higher than that of the traditional model, and the detection speed reaches 13.5 F/s;the Efficient-YOLO mask recognition model achieves an average accuracy of 83.1%, and the detection time is only 31.54 ms, which provides a good algorithm idea for classroom student status detection.
作者 冯文宇 张宇豪 张堃 费敏锐 徐胜 Feng Wenyu;Zhang Yuhao;Zhang Kun;Fei Minrui;Xu Sheng(School of Electrical Engineering,Nantong University,Nantong 226007,China;School of Zhangjian,Nantong University,Nantong,China;Shanghai Key Laboratory of Power Station Automation Technology,School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 210053,China;School of Electronics and Information,Nantong Vocational University,Nantong 226007,China;The East China Science and Technology Research Institute of Changshu Co.,Ltd,Suzhou 215500,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2021年第6期53-62,共10页 Journal of Electronic Measurement and Instrumentation
基金 国家自然基金重点项目(61633016) 江苏省高校自然基金(18KJB510038) 江苏省333工程可研项目(BRA2018218) 国家级大学生创新创业训练计划资助项目(202010304065Z)资助。
关键词 多人异常检测 姿态识别 口罩识别 YOLO模型 OpenPose模型 multi-people anomaly detection gesture recognition mask recognition YOLO model OpenPose
  • 相关文献

参考文献3

二级参考文献27

  • 1周意乔,徐昱琳.基于双向LSTM的复杂环境下实时人体姿势识别[J].仪器仪表学报,2020,41(3):192-201. 被引量:4
  • 2刘今越,李顺达,陈梦倩,郭士杰.面向移乘搬运护理机器人的人体姿态视觉识别[J].机器人,2019,41(5):601-608. 被引量:14
  • 3徐嘉荟.基于模型剪枝的神经网络压缩技术研究[J].信息通信,2019,0(12):165-167. 被引量:7
  • 4Paul R P,Shimano B,Mayer G E.Kinematic control equations for simple manipulators.IEEE Transactions on Systems,Man,and Cybernetics,1981,SMC-11(6):449-455 被引量:1
  • 5Welman C.Inverse kinematics and geometric constraints for articulated figure manipulation[Ph.D.dissertation].Simon Fraser University,Vancouver,Canada,1993 被引量:1
  • 6Whitney D E.Resolved motion rate control of manipulators and human prostheses.IEEE Transactions on Man-Machine Systems,1969,10(2):47-53 被引量:1
  • 7Wolovich W A,Elliot H.A computational technique for inverse kinematics//Proceedings of the 23rd Conference on Decision and Control.Las Vegas,1984:1359-1363 被引量:1
  • 8Wampler II C W.Manipulator inverse kinematic solutions based on vector formulations and damped least squares methods.IEEE Transactions on Systems,Man,and Cybernetics,1986,16(1):93-101 被引量:1
  • 9Zhao J,Badler N I.Inverse kinematics positioning using nonlinear programming for highly articulated figures.ACM Transactions on Graphics,1994,13(4):313-336 被引量:1
  • 10Rose III C F,Sloan P-P J,Cohen M F.Artist-directed inverse-kinematics using radial basis function interpolation.Computer Graphics Forum,2001,20(3):239-250 被引量:1

共引文献21

同被引文献53

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部