期刊文献+

A novel luciferase immunosorbent assay performs better than a commercial enzyme-linked immunosorbent assay to detect MERS-CoV specific IgG in humans and animals 被引量:1

原文传递
导出
摘要 The Middle East respiratory syndrome(MERS)is a lethal zoonosis caused by MERS coronavirus(MERS-CoV)and poses a significant threat to public health worldwide.Therefore,a rapid,sensitive,and specific serologic test for detecting anti-MERS-CoV antibodies in both humans and animals is urgently needed for the successful management of this illness.Here,we evaluated various novel luciferase immunosorbent assays(LISA)based on nucleocapsid protein(NP)as well as fragments derived from spike protein(S)including subunit 1(S1),N terminal domain(NTD),receptorbinding domain(RBD)and subunit 2(S2)of S for the detection of MERS-CoV-specific IgG.Fusion proteins,including nanoluciferase(NLuc)and various fragments derived from the NP or S protein of MERS-CoV,were expressed in human embryonic kidney 293 T cells.LISAs that detected anti-MERS-CoV IgG were further developed using cell lysates expressing various fusion proteins.Panels of human or animal samples infected with MERS-CoV were used to analyze the sensitivity and specificity of various LISAs in reference to a MERS-CoV RT-PCR,commercial S1-based ELISA,and pseudovirus particle neutralization test(ppNT).Our results showed that the S1-,RBD-,and NP-LISAs were more sensitive than the NTD-and S2-LISAs for the detection of anti-MERS-CoV IgG.Furthermore,the S1-,RBD-,and NP-LISAs were more sensitive(by at least 16-fold)than the commercially available S1-ELISA.Moreover,the S1-,RBD-,and NPLISA specifically recognized anti-MERS-CoV IgG and did not cross-react with samples derived from other human CoV(OC43,229E,HKU1,NL63)-infected patients.More importantly,these LISAs proved their applicability and reliability for detecting anti-MERS-CoV IgG in samples from camels,monkeys,and mice,among which the RBD-LISA exhibited excellent performance.The results of this study suggest that the novel MERS-CoV RBD-and S1-LISAs are highly effective platforms for the rapid and sensitive detection of anti-MERS-CoV IgG in human and animal samples.These assays have the potential to be used as serologic tests for
出处 《Biosafety and Health》 2019年第3期134-143,共10页 生物安全与健康(英文)
基金 This work was supported by the following grants:the National Major Project for Control and Prevention of Infectious Disease in China(No.2018ZX10101002 and 2018ZX10732401) the National Key Research and Development Program of China(No.2016YFD0500301 and 2017YFC1200503)。
  • 相关文献

参考文献1

二级参考文献5

  • 1de Groot RJ, Baker SC, Baric RS, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol, 2013, 87:7790-7792. 被引量:1
  • 2Chart JF, Lau SK, To KK, et al. Middle East respiratory syndrome eoronavirus: another zoonotie betacoronavirus causing SARS-Iike disease. Clin Microbiol Rev, 2015 , 28:465-522. 被引量:1
  • 3Corman VM, Eckerle I, Bleicker T, et al. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill,2012,17 : pii = 20285. 被引量:1
  • 4Lu X, Whitaker B, Sakthivel SK, et al. Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus. J Clin Microb, 2014, 52:67-75. 被引量:1
  • 5Mahony JB, Petrich A, Smieja M. Molecular diagnosis of respiratory virus infections. Crit Rev Clin Lab Sci, 2011, 217-249. 被引量:1

共引文献4

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部