摘要
研究了一般大型Stein矩阵方程的全局Krylov子空间算法.基于全局Hessenberg过程,提出了位移型全局Hess方法(shifted global Hessenberg method)和位移型全局CMRH方法(shifted global CMRH method),并给出了残差估计.数值实验表明了新方法相对于位移型全局Arnoldi型方法而言,在CPU时间和迭代步数上占有一定的优势.
The global Krylov subspace algorithms for general large Stein matrix equations are studied.Based on the global Hessenberg process,the shifted global Hess method and shifted global CMRH method are proposed.The residual estimation is also given.Numerical experiments finds that new methods have some advantages over the shifted global Arnoldi-type methods in terms of CPU and number of iterations.
作者
熊露
张婷
李胜坤
XIONG Lu;ZHANG Ting;LI Shengkun(College of Applied Mathematics, Chengdu University of Information Technology, Chengdu,Sichuan 610225, China)
出处
《内江师范学院学报》
CAS
2021年第8期32-38,共7页
Journal of Neijiang Normal University
基金
四川省科技厅应用基础研究项目(2019YJ0357)。