期刊文献+

Variational Gridded Graph Convolution Network for Node Classification 被引量:3

下载PDF
导出
摘要 The existing graph convolution methods usually suffer high computational burdens,large memory requirements,and intractable batch-processing.In this paper,we propose a high-efficient variational gridded graph convolution network(VG-GCN)to encode non-regular graph data,which overcomes all these aforementioned problems.To capture graph topology structures efficiently,in the proposed framework,we propose a hierarchically-coarsened random walk(hcr-walk)by taking advantage of the classic random walk and node/edge encapsulation.The hcr-walk greatly mitigates the problem of exponentially explosive sampling times which occur in the classic version,while preserving graph structures well.To efficiently encode local hcr-walk around one reference node,we project hcrwalk into an ordered space to form image-like grid data,which favors those conventional convolution networks.Instead of the direct 2-D convolution filtering,a variational convolution block(VCB)is designed to model the distribution of the randomsampling hcr-walk inspired by the well-formulated variational inference.We experimentally validate the efficiency and effectiveness of our proposed VG-GCN,which has high computation speed,and the comparable or even better performance when compared with baseline GCNs.
出处 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第10期1697-1708,共12页 自动化学报(英文版)
基金 supported by the Natural Science Foundation of Jiangsu Province(BK20190019,BK20190452) the National Natural Science Foundation of China(62072244,61906094) the Natural Science Foundation of Shandong Province(ZR2020LZH008)。
  • 相关文献

参考文献1

共引文献8

同被引文献19

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部