摘要
The simulation of wave propagation in high-temperature media requires thermoelastic theory.In this paper,we apply the rotated-staggered-grid pseudo-spectral method(RSG-PSM)to solving thermoelastic governing equations based on L-S theory.A time splitting method is used to solve the stiffness problem of the equations,and we introduce the rotated staggered pseudo-spectral operator and centered pseudo-spectral operator to compute the first-order spatial derivatives and second-order spatial derivatives,respectively.In the case of the heterogeneous-medium model,the Crank-Nicolson explicit method is used instead of the pseudo-spectral method to compute the wavefield.The properties and propagation of the thermal coupled wavefield are discussed,and we compare the simulation results obtained using the pseudo-spectral method,staggered-grid pseudo-spectral method,and RSG-PSM.In the case of an isotropic homogeneous medium,we obtain stable and highly accurate results using the time splitting method combined with the RSG-PSM.However,the algorithm cannot be applied with a large time step when the thermal conductivity changes dramatically,and the algorithm is unstable when the reference temperature has a gradient distribution.The optimal combined application of the mesh generation mode and numerical algorithm is explored,laying a foundation for the extension of these methods to thermoporoelasticity,thermoviscoelasticity,and anisotropy.
基金
supported by the National Natural Science Foundation of China(Grant Nos.41874125,and 41430322)
the National Key Research and Development Project(Grant Nos.2018YFC0603701,and 2017YFC06061301).