期刊文献+

基于特征显著性的点云自适应精简 被引量:2

Adaptive simplification of point cloud based on feature saliency
下载PDF
导出
摘要 为解决目前点云精简算法适应性差的问题,提出一种基于特征显著性的自适应精简算法。通过对点云FPFH(fast point feature histograms)特征聚类生成特征单词;在考虑单词间差异的基础上,融合单词内部的特征分散程度,形成显著性词典,由词典软编码单点特征,得到点云特征显著性;在均匀网格基础上,若网格内的特征显著性越强,则配置越高的采样率,由此实现点云的自适应精简。实验结果表明,所提算法能够区分出点云中的特征明显区域,在精简不同尺寸、形状点云时具有适应性。 To solve the problem of poor adaptability of current feature-based point cloud simplification,an adaptive simplification of point cloud based on feature saliency was proposed.Feature words were generated by clustering point cloud FPFH(fast point feature histograms)features.A saliency dictionary was formulated considering not only the dissimilarity between different words but also the feature divergence with the word.According to the saliency dictionary,each point feature was softly encoded into a saliency value,namely the point feature saliency.After uniformly meshing the point cloud,the stronger the feature saliency in the grid was,the higher the sampling rate was configured.Experimental results show that the proposed algorithm can effectively distinguish the obvious feature areas in the point cloud,and it is adaptive to simplify point cloud with different sizes and shapes.
作者 张亦芳 李立 刘光帅 ZHANG Yi-fang;LI Li;LIU Guang-shuai(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处 《计算机工程与设计》 北大核心 2021年第8期2211-2217,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(51275431) 中国电子科技集团公司第十研究所技术创新基金项目(十所计20181218)。
关键词 FPFH特征 特征词 显著性检测 自适应 点云精简 FPFH descriptors feature word salient feature self-adaption simplification
  • 相关文献

参考文献4

二级参考文献79

  • 1洪军,丁玉成,曹亮,武殿梁.逆向工程中的测量数据精简技术研究[J].西安交通大学学报,2004,38(7):661-664. 被引量:61
  • 2Wilcox B H. Non-geometric hazard detection for a Mars microrover[ C ]//Proceedings of the 1994 AIAA Conference on Intelligent Robotics in Field, Factory, Service and Space. Hous- ton, USA: IEEE, 1994: 675-684. 被引量:1
  • 3Papadakis P. Terrain traversability analysis methods for un- manned ground vehicles: A survey[ J]. Engineering Applications of Artificial Intelligence, 2013,26(4) : 1373-1385. 被引量:1
  • 4Bajracharya M, Howard A, Matthies L H, et al. Autonomous off- road navigation with end-to-end learning for the LAGR program [ J ]. Journal of Field Robotics, 2009, 26 ( 1 ) : 3-25. 被引量:1
  • 5Garcia Bermudez F L, Julian R C, Haldane D W, et al. Per- formance analysis and terrain classification for a legged robot over rough terrain[ C ]//Proceedings of the 2012 IEEE/RSJ Interna- tional Conference on Intelligent Robots and Systems. Vilamoura, Portugal: IEEE, 2012 : 513-519. 被引量:1
  • 6Kim D, Oh S M, Rehg J M. Traversability classification for ugvnavigation : A comparison of patch and superpixel representations [C J//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2007 : 3166-3173. 被引量:1
  • 7Khan Y N, Komma P, Ze11 A. High resolution visual terrain classification for outdoor robots [ C ]//Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops. Barcelona, Spain: IEEE, 2011: 1014-1021. 被引量:1
  • 8Gong Y H, Chuan C H, Guo X Y. Image indexing and retrieval based on color histograms [ J ]. Multimedia Tools and Applica- tions, 1996, 2(2): 133-156. 被引量:1
  • 9Angelova A, Matthies L, Helmick D, et al. Fast terrain classifi- cation using variable-length representation for autonomous naviga- tion[ C ]//Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, USA : IEEE, 2007 : 1-8. 被引量:1
  • 10Zou Y H, Chen W H, Xie L H, et al. Comparison of different approaches to visual terrain classification for outdoor mobile robots [J]. Pattern Recognition Letters, 2014, 38: 54-62. 被引量:1

共引文献46

同被引文献34

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部