期刊文献+

基于深度学习的加密流量分类研究综述 被引量:6

A Survey of Encrypted Traffic Classification Based on Deep Learning
下载PDF
导出
摘要 近年来,为保护公众隐私,互联网上的很多流量被加密传输,传统的基于深度包检测、机器学习的方法在面对加密流量时,准确率大幅下降。随着深度学习自动学习特征的应用,基于深度学习算法的加密流量识别和分类技术得到了快速发展,本文对这些研究进行综述。首先,简要介绍基于深度学习的加密流量检测应用场景。然后,从数据集的使用和构建、检测模型和检测性能3个方面对已有工作进行总结和评价,其中检测技术重点论述数据的预处理、不平衡数据集的处理、神经网络构建、实时检测等方法。最后,讨论当前研究中出现的问题和未来发展方向和前景,为该领域的研究人员提供一些借鉴。 In recent years,in order to protect the public privacy,a lot of traffic on the Internet is encrypted.The accuracy of traditional deep packet inspection and machine learning methods in the face of encrypted traffic has dropped significantly.With the application of deep learning automatic learning features,the encryption flow identification and classification technology based on deep learning algorithms have been rapidly developed.This article reviews these studies.First,this paper briefly introduces the application scenarios of encrypted traffic detection based on deep learning.Then,it summarizes and evaluates the existing works from three aspects:the use and construction of data sets,the detection model and the detection performance.The detection technology focuses on data preprocessing,unbalanced data set processing,neural network construction,real-time detection,etc.Finally,the problems in current research and future development directions and prospects are discussed,so as to provide some references for researchers in this field.
作者 冷涛 LENG Tao(Department of Computer Science and Technology, Sichuan Police College, Luzhou 646000, China;Criminal Inspection Key Laboratory of Sichuan Province Colleges(Sichuan Police College), Luzhou 646000, China)
出处 《计算机与现代化》 2021年第8期112-120,共9页 Computer and Modernization
基金 四川省科技厅重大研发项目(19ZDYF0484) 刑事检验四川省高校重点实验室开放基金资助项目(2020ZD03)。
关键词 网络空间安全 加密流量 分类 深度学习 机器学习 cyber security encrypted traffic classification deep learning machine learning
  • 相关文献

参考文献2

二级参考文献13

共引文献28

同被引文献26

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部