期刊文献+

基于热释电红外传感器的人体位置与速度分类 被引量:1

Classification of human position and speed based on PIR sensors
下载PDF
导出
摘要 针对热释电红外(PIR)传感器在室内人体定位及识别上的准确率问题,设计了一种人体红外信号感知模型,提出了一种定位与识别的新型方法。模型节点采用一对正交的PIR传感器,结合对菲涅尔透镜的视场角调制,能够有效探测水平与垂直方向的人体红外信号。通过对这一对PIR传感器时域输出信号的采集分析,采用时域信号的峰值时间序列特征并融合两只传感器数据的相关性分析,使用机器学习SoftMax分类方法进行位置及速度等级的分类。实验结果表明:所设计方法在位置与速度等级分类上实现94.79%的准确率,在室内场景智能感知上具有较好的应用价值。 Aiming at the accuracy of pyroelectric infrared(PIR)sensor in indoor human body positioning and recognition,a human body infrared signal sensing model is designed,and a new method of positioning and recognition is proposed.This model node uses a pair of orthogonal PIR sensors and combines with the field angle modulation of the Fresnel lens,to effectively detect human infrared signal in the horizontal and vertical directions.This method through acquiring and analyzing on time-domain output signals of this pair of PIR sensors,using peak time series characteristics of time-domain signals and correlation analysis of fusion of two sensor data,and using SoftMax classification method of machine learning algorithm to classify positions and speed levels.Experimental results show that the design method achieves accuracy of 94.79%in levelclassification of position and speed,and has good application value in intelligent perception of indoor scenes.
作者 徐晓冰 孙百顺 孙伟 左涛涛 焦宇浩 XU Xiaobing;SUN Baishun;SUN Wei;ZUO Taotao;JIAO Yuhao(School of Electrical Engineering and Automation,Hefei University of Technology,Hefei 230009,China)
出处 《传感器与微系统》 CSCD 北大核心 2021年第8期38-41,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(51877060)。
关键词 热释电红外(PIR)传感器 峰值时间序列 SoftMax分类 位置 速度等级 pyroelectric infrared(PIR)sensor peak time series SoftMax classification position speed level
  • 相关文献

参考文献4

二级参考文献23

  • 1薛召军,赵鹏飞,万柏坤,李轶,明东,靳世久.红外热成像在步态识别中的应用[J].光电子.激光,2009,20(3):402-405. 被引量:8
  • 2刘卫国,张良莹,姚熹.多层热释电探测器的动态热释电响应[J].电子学报,1995,23(6):71-75. 被引量:2
  • 3徐克宝,高洁,鞠晓君,高丽丽.具有抗环境热源干扰的热释电探测器的应用研究[J].传感技术学报,2006,19(3):758-762. 被引量:10
  • 4BAZIN A I, NIXION M S. Gait verification using probabilistic methods[ A]. Proceedings of 7th IEEE Workshop on Applications of Computer Vision, IEEE, 2005:50-55. 被引量:1
  • 5BODOR R, JACKSON B, PAPANIKOLOPOULOS N. Vision-based human tracking and activity recognition [ C ]. Proceedings of the 11th Mediterranean Conference on Control and Automation IEEE, 2003:150-155. 被引量:1
  • 6ZHOU H Y, HUH SH. A survey: Human movement tracking and stroke rehabilitation [ R ]. Tech. Rep. CSM-420 University of Essex, 2004. 被引量:1
  • 7JONES G D, HODGETTS M A, ALLSO P R E, et al. A novel approach for surveillance using visual and thermal images[ C]. Proceedings of the DERA IEE Workshop on Intelligent Sensor Processing IEEE, 2001:911-919. 被引量:1
  • 8FELLER S D, CULL E, KOWALSKI D, et al. Brady. Tracking and imaging humans on heterogeneous infrared sensor array for tactical applications [ J ]. Unattended Ground Sensor Technology and Applications IV, E. M. Carapezza, ed., Proc. SPIE, 2002,4743:168-175. 被引量:1
  • 9SEKMEN A S, WILKES M, KAWAMURA K. An application of passive human-robot interaction:human tracking based on attention distraction [ J ]. IEEE Trans. Syst. , Man Cybern, 2002 : A 32,248-259. 被引量:1
  • 10BAZIN A I, NIXON M S. Probabilistic combination of static and dynamic gait features for verification [ A ]. In: Proceedings of Biometric Technology for Human Identification Ⅱ. SPIE Defon - and Security Symposium [ C ]. Orlando, FL, United States, 2005,5579:23-30. 被引量:1

共引文献77

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部