期刊文献+

一类潜伏期有传染性的传染病模型动力学分析 被引量:5

Dynamic Analysis of an Epidemic Model With Infectivity in the Incubation Period
下载PDF
导出
摘要 建立了一类潜伏期具备传染性的传染病传播模型,根据疾病传播规律求解了疾病消失和持续生存的阈值——基本再生数.对系统的稳定性进行了讨论,得到了系统稳定性条件.最后,以COVID⁃19为例,解释了各种举措在疾病控制中的作用,并对疫情传播扩散做了探讨和预测. A transmission model for infectious diseases with infectivity in the latent periods was established.According to the law of disease transmission,the basic regeneration number,as the threshold of disease disap⁃pearance and spread,was solved.The stability of the system was discussed and the stability condition for the system was obtained.With the COVID⁃19 pandemic as an example,the effects of various measures for disease control were studied.The spread of the pandemic was discussed and predicted.The work makes a reference for epidemic disease control.
作者 张丽娟 王福昌 万永革 李振刚 ZHANG Lijuan;WANG Fuchang;WAN Yongge;LI Zhengang(Institute of Disaster Prevention,China Earthquake Administration,Sanhe,Hebei 065201,P.R.China;Hebei Key Laboratory of Earthquake Dynamics,Sanhe,Hebei 065201,P.R.China;Institute of Sociology,Chinese Academy of Social Sciences,Beijing 100010,P.R.China)
出处 《应用数学和力学》 CSCD 北大核心 2021年第8期866-873,共8页 Applied Mathematics and Mechanics
基金 中央高校基本科研业务费(ZY20215155) 国家自然科学基金(41674055)。
关键词 流行病模型 全局稳定性 基本再生数 COVID⁃19 epidemic model global stability basic regeneration number COVID⁃19
  • 相关文献

参考文献9

二级参考文献46

  • 1黄德生,关鹏,周宝森.SIR模型对北京市SARS疫情流行规律的拟合研究[J].疾病控制杂志,2004,8(5):398-401. 被引量:12
  • 2徐恭贤,冯恩民,王宗涛,谭欣欣,修志龙.SARS流行病的SEIR动力学模型及其参数辨识[J].黑龙江大学自然科学学报,2005,22(4):459-462. 被引量:18
  • 3W O Kermack, A. G. M. , Contributions to the mathematical theory fepidemics [ J ]. Proc. Roy. Soc, 1927 (A115). 700-721. 被引量:1
  • 4Li, G. and Zhen, J. Global stability of an sei epidemic model withgeneral contact rate[J]. Chaos Solitons and Fractals, 2005,23 (3) ,997 - 1004. 被引量:1
  • 5Li, G. and Jin,Z. Global stability ofa SEIR epidemic model with infectious force in latent,infected and immune period[J]. Chaos, Solitons and Fractals, 2005,25(5) ,1177 -1184. 被引量:1
  • 6van den Driessche, P. and Watmough, J. Reproduction numbers and sub - threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences,2002, (180) ,29-48. 被引量:1
  • 7Hirsch, Hanisch W. M. H. and Gabriel,J. Differential equation models of some parasitic infections:Methods for the study of asymptotic behavior[ J ]. Communications on Pure and Applied Mathematics, 1985,38 (6) ,733 - 753. 被引量:1
  • 8Li, M.Y. and Muldowney, J.S. A geometric approach to the global - stability problems [ J ]. SIAM J. Math. Anal, 1996,27(4) ,1070 - 1083. 被引量:1
  • 9Li, M.Y. , Dulac criteria for autonomous systems having an invariant affine manifold[J]. J. Math. Anal. Appl. , 1996, (199) ,374-390. 被引量:1
  • 10Li, M.Y. and Muldowney,J. S. On R.A. Smith's Autonomous Convergence Theorem[J]. Rocky Mountain J. Math., 1995,25 ( 1 ) ,365 -378. 被引量:1

共引文献374

同被引文献39

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部