期刊文献+

基于自注意力长短期记忆网络的Web软件系统实时剩余寿命预测方法 被引量:5

Real-time remaining life prediction method of Web software system based on self-attention-long short-term memory network
下载PDF
导出
摘要 为了能够实时准确对Web软件系统的剩余使用寿命(RUL)进行预测,考虑Web系统健康状态性能指标的时序特性和指标间的相互依赖特性,提出了一种基于自注意力长短期记忆(Self-Attention-LSTM)网络的Web软件系统实时剩余寿命预测方法。首先,搭建加速寿命测试实验平台来收集反映Web软件系统老化趋势的性能指标数据;然后,根据该性能指标数据的时序特性来构建长短期记忆(LSTM)循环神经网络以提取性能指标的隐含层特征,并使用自注意力机制建模特征间的依赖关系;最后,得到系统RUL的实时预测值。在三组测试集上,把所提模型与反向传播(BP)网络和常规的循环神经网络(RNN)做了对比。实验结果表明,所提模型的平均绝对误差(MAE)比长短期记忆(LSTM)网络平均低16.92%,相对准确率(Accuracy)比LSTM网络平均高5.53%,验证了Self-Attention-LSTM网络剩余寿命预测模型的有效性。可见所提方法能为优化系统抗衰决策提供技术支撑。 In order to predict the Remaining Useful Life(RUL)of Web software system in real time and accurately,taking into consideration the time sequence characteristics of the Web system health status performance indicators and the interdependence between the indicators,a real-time remaining life prediction method of Web software system based on Self-Attention-Long Short-Term Memory(Self-Attention-LSTM)network was proposed.Firstly,an accelerated life test platform was built to collect the performance indicators data reflecting the aging trend of the Web software system.Then,according to the time sequence characteristics of the performance indicators data,a Long Short-Term Memory(LSTM)recurrent neural network was constructed to extract the hidden layer characteristics of the performance indicators,and the self-attention mechanism was used to model the dependency relationship between the characteristics.Finally,the real-time RUL prediction value of the Web system was obtained.On three test sets,the proposed model was compared with the Back Propagation(BP)network and the conventional Recurrent Neural Network(RNN).Experimental results show that the Mean Absolute Error(MAE)of the model is 16.92% lower than that of LSTM on average,and the relative accuracy(Accuracy)of the model is 5.53% higher than that of LSTM on average,which verify the effectiveness of the RUL model of Self-Attention-LSTM network.It can be seen that the proposed method can provide technical support for optimizing the software rejuvenation decision of the Web system.
作者 党伟超 李涛 白尚旺 高改梅 刘春霞 DANG Weichao;LI Tao;BAI Shangwang;GAO Gaimei;LIU Chunxia(College of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan Shanxi 030024,China)
出处 《计算机应用》 CSCD 北大核心 2021年第8期2346-2351,共6页 journal of Computer Applications
基金 山西省应用基础研究计划项目(201901D111266)。
关键词 Web软件系统 剩余使用寿命 长短期记忆网络 自注意力机制 抗衰决策 Web software system Remaining Useful Life(RUL) Long Short-Term Memory(LSTM)network selfattention mechanism rejuvenation decision
  • 相关文献

参考文献9

二级参考文献94

  • 1刘仁云,于繁华,刘军.基于小波神经网络的简支梁桥损伤识别[J].吉林大学学报(工学版),2009,39(S2):413-416. 被引量:5
  • 2李英,李元春.基于神经网络和遗传算法的采油控制系统[J].吉林大学学报(工学版),2006,36(1):82-86. 被引量:4
  • 3李洪双,吕震宙.估计疲劳寿命三参数P—S—N曲线的新方法[J].机械强度,2007,29(2):300-304. 被引量:11
  • 4V Vapnik. Statistical Learning Theory [ M ]. New York: Wiley, 1998. 被引量:1
  • 5T Joachims. Making large - scale support vector machine learning practical[ J ]. Advances in kernel methods : support vector learning, 1999 ( 1 ) : 169 - 184. 被引量:1
  • 6J C Platt. Fast training of support vector machines using sequential minimal optimization [ J]. Advances in kernel methods : support vector learning, 1999 ( 1 ) : 185 - 208. 被引量:1
  • 7Chih- Chung Chang, Chih -Jen Lin. LIBSVM: a library for support vector machines [ EB/OL]. 2001. Software available at http://www, csie. ntu. edu. tw/- cjhn/ libsvm. 被引量:1
  • 8R Collobert, Y Bengio, S Bengio. A Parallel Mixture of SVMs for Very Large Scale Problems[ J]. in Neural Information Processing Systems, 2002 ( 14 ) : 1105 - 1114. 被引量:1
  • 9Luca Zanni, Thomas Serafini, Gaetano Zanghirati. Parallel Software for Training Large Scale Support Vector Machines on Multiprocessor Systems [ J ]. Journal of Machine Leaming Research, 2006 (7) : 1467 - 1492. 被引量:1
  • 10Jian- Xiong Dong, Adam Krzyzak, Ching Y Suen. Fast SVM Training Algorithm with Decomposition on Very Large Data Sets [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(4) :603 -618. 被引量:1

共引文献87

同被引文献49

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部