摘要
采用第一性原理计算和热力学方法,研究了Zr-Sn-Nb合金氧化膜中典型氧化物m-ZrO_(2)、t-ZrO_(2)、t-SnO、t-SnO_(2)、t-NbO_(2)和m-Nb_(2)O_(5)的热稳定性,探讨了O化学势以及腐蚀介质的温度和压力对氧化物稳定性的影响。结果表明:氧化物稳定性由强到弱的顺序为Zr氧化物、Nb氧化物和Sn氧化物,氧化膜中典型析出相β-Nb的氧化速率小于Zr基体,与试验结果相吻合;贫氧区NbO_(2)和SnO比较稳定,而富氧区Nb_(2)O_(5)和SnO_(2)比较稳定,这与试验中NbO_(2)常出现于氧化性较弱的去离子水环境中,而Nb_(2)O_(5)常出现于氧化性较强的碱性水中的结论相一致。
Thermal stability of typical oxides such as m-ZrO_(2),t-ZrO_(2),t-SnO,t-SnO_(2),t-NbO_(2) and m-Nb_(2)O_(5) in the oxide film on Zr-Sn-Nb alloy was studied by first-principles calculation and thermodynamic method,and the influence of chemical potential of oxygen,temperature and pressure of corrosive medium on the stability of oxides were discussed.The results showed that the order of stability of the oxides from strong to weak was Zr oxide,Nb oxide and Sn oxide,and that the oxidation rate of typicalβ-Nb precipitates in the oxide film was slower than that of Zr matrix,which was in good agreement with the experimental results.In the oxygen-depleted region,NbO_(2) and SnO were relatively stable,while in the oxygen-rich region,Nb_(2)O_(5) and SnO_(2) were relatively stable,which were consistent with the conclusion that NbO_(2) often appeared in the deionized water environment with weak oxidation,while Nb_(2)O_(5) often appeared in the alkaline water with strong oxidation.
作者
赵毅
王栋
徐晨皓
吴江桅
王洋
谢耀平
ZHAO Yi;WANG Dong;XU Chenhao;WU Jiangwei;WANG Yang;XIE Yaoping(Science and Technology on Reactor Fuel and Materials Laboratory,Nuclear Power Institute of China,Chengdu Sichuan 610213,China;Institute of Materials Science,Shanghai University,Shanghai 200072,China;High Performance Computing Center,School of Computer Science,Shanghai University,Shanghai 200444,China)
出处
《上海金属》
CAS
2021年第4期112-118,共7页
Shanghai Metals
基金
国家自然科学基金(No.11704360)。
关键词
锆合金氧化膜
第一性原理计算
化学势
相稳定性
zirconium alloy oxide film
first-principles calculation
chemical potential
phase stability