摘要
Silicon is considered as one of the most promising anodes for Li-ion batteries(LIBs), but it is limited for commercial applications by the critical issue of large volume expansion during the lithiation. In this work, the structure of silicon/carbon(Si/C) particles on graphene sheets(Si/C–G) was obtained to solve the issue by using the void space of Si/C particles and graphene. Si/C–G material was from Si/PDA-GO that silicon particles was coated by polydopamine(PDA) and reacted with oxide graphene(GO). The Si/C–G material have good cycling performance as the stability of the structure during the lithiation/dislithiation.The Si/C–G anode materials exhibited high reversible capacity of 1910.5 mA h g^(-1) and 1196.1 mA h g^(-1) after 700 cycles at 357.9 m A g^(-1), and have good rate property of 507.2 mA h g^(-1) at high current density,showing significantly improved commercial viability of silicon electrodes in high-energy-density LIBs.
基金
financial support from National Natural Science Foundation of China(Nos.51525206,51927803,51902316)
National Key R&D Program of China(2016YFA0200102 and 2016YFB0100100)
the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010602)
Liaoning Revitalization Talents Program(No.XLYC1908015)。