期刊文献+

Human motion prediction using optimized sliding window polynomial fitting and recursive least squares 被引量:2

原文传递
导出
摘要 Human motion prediction is a critical issue in human-robot collaboration(HRC)tasks.In order to reduce the local error caused by the limitation of the capture range and sampling frequency of the depth sensor,a hybrid human motion prediction algorithm,optimized sliding window polynomial fitting and recursive least squares(OSWPF-RLS)was proposed.The OSWPF-RLS algorithm uses the human body joint data obtained under the HRC task as input,and uses recursive least squares(RLS)to predict the human movement trajectories within the time window.Then,the optimized sliding window polynomial fitting(OSWPF)is used to calculate the multi-step prediction value,and the increment of multi-step prediction value was appropriately constrained.Experimental results show that compared with the existing benchmark algorithms,the OSWPF-RLS algorithm improved the multi-step prediction accuracy of human motion and enhanced the ability to respond to different human movements.
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第3期76-85,110,共11页 中国邮电高校学报(英文版)
基金 supported by the National Natural Science Foundation of China(61701270) the Young Doctor Cooperation Foundation of Qilu University of Technology(Shandong Academy of Sciences)(2017BSHZ008)。
  • 相关文献

参考文献1

二级参考文献5

共引文献18

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部