期刊文献+

融合语义关联和文本降维的社交媒体主题提取

Social Media Topic Extraction Based on Semantic Association and Text Dimension Reduction
下载PDF
导出
摘要 随着互联网的普及,社交媒体平台上积累了大量的文本数据,并逐渐形成社交媒体文本大数据。这些文本数据的语法和语义结构复杂,需要运用数据挖掘、自然语言处理等相关技术提取关键词。基于此,笔者提出融合语义关联知识和文本降维模型的社交媒体主题提取模型。实验表明,该模型对复杂网络文本数据的主题提取具有较好的性能。 With the popularity of the Internet,a large amount of text data has accumulated on the social media platform,and gradually formed social media text big data.The syntax and semantic structure of these text data are complex,so it is necessary to use data mining,natural language processing and other related technologies to extract keywords.Based on this,this paper proposes a social media topic extraction model which integrates semantic association knowledge and text dimension reduction model.Experiments show that the model has good performance for topic extraction of complex network text data.
作者 彭云 万红新 PENG Yun;WAN Hongxin(School of Computer and Information Engineering,Jiangxi Normal University,Nanchang Jiangxi 330022,China;School of Mathematics and Computer Science,Jiangxi Science and Technology Normal University,Nanchang Jiangxi 330038,China)
出处 《信息与电脑》 2021年第11期183-185,共3页 Information & Computer
基金 江西省高校人文社科项目(项目编号:JC19121) 江西省教育厅科技项目(项目编号:GJJ201127)。
关键词 语义关联 主题模型 社交媒体 文本降维 semantic association topic model social media text dimension reduction
  • 相关文献

参考文献11

二级参考文献161

  • 1陈涛,谢阳群.文本分类中的特征降维方法综述[J].情报学报,2005,24(6):690-695. 被引量:79
  • 2任禾,曾隽芳.一种基于信息熵的中文高频词抽取算法[J].中文信息学报,2006,20(5):40-43. 被引量:22
  • 3贺敏,龚才春,张华平,程学旗.一种基于大规模语料的新词识别方法[J].计算机工程与应用,2007,43(21):157-159. 被引量:24
  • 4李恒训,张华平,秦鹏,等.基于主题词的网络热点话题发现[C].见:第五届全国信息检索学术会议论文集.上海:中国中文信息学会,2009:134-143. 被引量:5
  • 5洪宇,张宇,刘挺,李生.话题检测与跟踪的评测及研究综述[J].中文信息学报,2007,21(6):71-87. 被引量:153
  • 6Isabella P. Folksonomies: Indexing and retrieval in Web 2.0 [ M ]. Berlin : De Gruyter Suar, 2009. 被引量:1
  • 7Shepitsen A,Gemmell J, Mobasher B, et al. Personalized recommendation in social tagging systems using hierarchical clustering [ C ]// Proceedings of the 2008 ACM Conference on Recommender Systems, New York , United States,2008:259-266. 被引量:1
  • 8Gemmell J,Shepitsen A,Mobasher B, et al. Personalized navigation in social tagging systems using hierarchical tag clustering[ C ]// Proceedings of the 10th International conference on Data Warehousing and Knowledge Discovery. Springer-Verlag, Berlin, Heidelberg,2008:196-205. 被引量:1
  • 9Xu G D, Zong Y, Jin P, et al. KIPTC : a kernel information propagation tag clustering algorithm [ J/OL ]. Journal of Intelligent Information Systems, http://link, springer. corn/article/10. 1007/s10844-013-0262-7/fulltext. html. 被引量:1
  • 10Dattolo A, Eynard D, Mazzola L. An integrated approach to discover tag semantics [ C ]// Proceedings of the 2011 ACM symposium on applied computing, TaiChung, Taiwan, China, 2011 : 814-820. 被引量:1

共引文献217

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部