期刊文献+

Machine learning enables polymer cloud-point engineering via inverse design 被引量:6

原文传递
导出
摘要 Inverse design is an outstanding challenge in disordered systems with multiple length scales such as polymers,particularly when designing polymers with desired phase behavior.Here we demonstrate high-accuracy tuning of poly(2-oxazoline)cloud point via machine learning.With a design space of four repeating units and a range of molecular masses,we achieve an accuracy of 4℃ root mean squared error(RMSE)in a temperature range of 24–90℃,employing gradient boosting with decision trees.The RMSE is>3x better than linear and polynomial regression.We perform inverse design via particle-swarm optimization,predicting and synthesizing 17 polymers with constrained design at 4 target cloud points from 37 to 80℃.Our approach challenges the status quo in polymer design with a machine learning algorithm,that is capable of fast and systematic discovery of new polymers.
出处 《npj Computational Materials》 SCIE EI CSCD 2019年第1期523-528,共6页 计算材料学(英文)
基金 J.N.K.,Q.L.and T.B.are supported by the AME Programmatic Fund by the Agency for Science,Technology,and Research under Grant no.A1898b0043.
关键词 INVERSE POLYMER enable
  • 相关文献

同被引文献38

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部