期刊文献+

Precision in harsh environments 被引量:4

原文传递
导出
摘要 Microsystems are increasingly being applied in harsh and/or inaccessible environments,but many markets expect the same level of functionality for long periods of time.Harsh environments cover areas that can be subjected to high temperature,(bio)-chemical and mechanical disturbances,electromagnetic noise,radiation,or high vacuum.In the field of actuators,the devices must maintain stringent accuracy specifications for displacement,force,and response times,among others.These new requirements present additional challenges in the compensation for or elimination of cross-sensitivities.Many state-of-the-art precision devices lose their precision and reliability when exposed to harsh environments.It is also important that advanced sensor and actuator systems maintain maximum autonomy such that the devices can operate independently with low maintenance.The next-generation microsystems will be deployed in remote and/or inaccessible and harsh environments that present many challenges to sensor design,materials,device functionality,and packaging.All of these aspects of integrated sensors and actuator microsystems require a multidisciplinary approach to overcome these challenges.The main areas of importance are in the fields of materials science,micro/nano-fabrication technology,device design,circuitry and systems,(first-level)packaging,and measurement strategy.This study examines the challenges presented by harsh environments and investigates the required approaches.Examples of successful devices are also given.
出处 《Microsystems & Nanoengineering》 EI 2016年第1期61-72,共12页 微系统与纳米工程(英文)
  • 相关文献

同被引文献86

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部