期刊文献+

Machine learning for accelerating the discovery of high-performance donor/acceptor pairs in non-fullerene organic solar cells 被引量:5

原文传递
导出
摘要 Integrating artificial intelligence(AI)and computer science together with current approaches in material synthesis and optimization will act as an effective approach for speeding up the discovery of high-performance photoactive materials in organic solar cells(OSCs).Yet,like model selection in statistics,the choice of appropriate machine learning(ML)algorithms plays a vital role in the process of new material discovery in databases.In this study,we constructed five common algorithms,and introduced 565 donor/acceptor(D/A)combinations as training data sets to evaluate the practicalities of these ML algorithms and their application potential when guiding material design and D/A pairs screening.
出处 《npj Computational Materials》 SCIE EI CSCD 2020年第1期645-652,共8页 计算材料学(英文)
基金 This work was financially supported by the National Natural Science Foundation of China(NSFC)(grant no.21702154 and 51773157)and the Fundamental Research Funds for the Central Universities We also thank the support of the opening project of Key Laboratory of Materials Processing and Mold and Beijing National Laboratory for Molecular Sciences(BNLMS201905).
  • 相关文献

同被引文献25

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部