期刊文献+

应用于镱原子激光冷却的永磁体塞曼减速器研究

Study on Permanent Magnet Zeeman Slower for Laser Cooling of Ytterbium Atoms
原文传递
导出
摘要 基于激光冷却技术,理论研究了冷却光参数对镱原子永磁体塞曼减速器的影响。通过对冷却光的光强、有效系数进行计算分析,得到永磁体塞曼减速器的最佳长度。研究永磁体塞曼减速器磁场分布对冷却光偏振和失谐量的依赖关系,发现将塞曼捕获速度设为310m/s时,若采用失谐量为-400MHz的σ-光,永磁体塞曼减速器的磁场幅值可较小,此时原子在塞曼减速器末端更容易脱离共振减速过程。根据优化后的冷却光参数,本文结合磁偶极子模型,提出了适用于冷镱原子光晶格钟的横向磁场永磁体塞曼减速器,为星载钟以及可搬运光钟的发展奠定基础。 Based on the laser cooling technology,the effects of laser parameters on permanent magnet Zeeman slower for ytterbium atoms are studied theoretically.The optimal length of the permanent magnet Zeeman slower is obtained by calculating and analyzing the intensity of the cooling laser and the effective coefficient.We show the dependence of the magnetic field distribution of the permanent magnet Zeeman slower on the laser polarization and detuning.The magnetic field amplitude of permanent magnet Zeeman slower can be smller when the capture speed is 310m/s andσ-light with-400MHz detuning frequency is adopted,where atoms are more likely to escape from the resonance deceleration process at the end of the Zeeman slower.According to the optimal laser parameters and the magnetic dipole model,we propose a transverse-field permanent magnet Zeeman slower suitable for cold ytterbium atomic optical lattice clocks,which lays the foundation for the development of space-borne clocks and transportable optical clocks.
作者 张胜 骆莉梦 艾迪 谯皓 周敏 徐信业 Zhang Sheng;Luo Limeng;Ai Di;Qiao Hao;Zhou Min;Xu Xinye(State Key Laboratory of Precision Spectroscopy,East China Normal University,Shanghai 200241,China)
出处 《应用激光》 CSCD 北大核心 2021年第2期374-379,共6页 Applied Laser
基金 国家重点基础研究发展计划(2016YFA0302103、2016YFB0501601、2017YFF0212003)、上海市科学技术重大专项(2019SHZDZX01)、国家自然科学基金(11134003)、上海市优秀学术带头人计划(12XD1402400)。
关键词 激光冷却 塞曼减速 永磁体 失谐量 饱和光强 laser cooling Zeeman slower permanent magnet detuning saturation intensity
  • 相关文献

参考文献2

二级参考文献20

  • 1Pritchard D E,Cronin A D,Gupta S and Kokorowski D A 2001 Ann.Phys.(Leipzig) 10 35. 被引量:1
  • 2Sorrentino F,Ferrari G,Poli N,Drullinger R and Tino G M 2006 Mod.Phys.Lett.B 20 1287. 被引量:1
  • 3Bloom B J,Nicholson T L,Williams J R,Campbell S L,Bishof M,Zhang X,Zhang W,Bromley S L and Ye J 2014 Nature 506 71. 被引量:1
  • 4Ushijima I,Takamoto M,Das M,Ohkubo T and Katori H 2015 Nat.Photon.9 185. 被引量:1
  • 5Hinkley N,Sherman J A,Phillips N B,Schioppo M,Lemke N D,Beloy K,Pizzocaro M,Oates C W and Ludlow A D 2013 Science 341 1215. 被引量:1
  • 6Bouyer P 2013 Physics 6 92. 被引量:1
  • 7Weiner J,Bagnato V S,Zilio S and Julienne P S 1999 Rev.Mod.Phys.71 1. 被引量:1
  • 8Anderson M H,Ensher J R,Matthews M R,Wieman C E and Cornell E A 1995 Science 269 5221. 被引量:1
  • 9Phillips W D and Metcalf H 1982 Phys.Rev.Lett.48 596. 被引量:1
  • 10Wang Q,Lin Y G,Li Y,Lin B K,Meng F,Zang E J,Li T C and Fang Z J 2014 Chin.Phys.Lett.31 123201. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部