期刊文献+

结合时空注意力机制和自适应图卷积网络的骨架行为识别 被引量:3

Skeleton-Based Action Recognition on Spatio-Temporal Attention Mechanism and Adaptive Graph Convolutional Network
下载PDF
导出
摘要 针对骨架行为识别对时空特征提取不充分以及难以捕捉全局上下文信息的问题,研究了一种将时空注意力机制和自适应图卷积网络相结合的人体骨架行为识别方案。首先,构建基于非局部操作的时空注意力模块,辅助模型关注骨架序列中最具判别性的帧和区域;其次,利用高斯嵌入函数和轻量级卷积神经网络的特征学习能力,并考虑人体先验知识在不同时期的影响,构建自适应图卷积网络;最后,将自适应图卷积网络作为基本框架,并嵌入时空注意力模块,与关节信息、骨骼信息以及各自的运动信息构建双流融合模型。该算法在NTU RGB+D数据集的两种评价标准下分别达到了90.2%和96.2%的准确率,在大规模的数据集Kinetics上体现出模型的通用性,验证了该算法在提取时空特征和捕捉全局上下文信息上的优越性。 To solve the problem that skeleton behavior recognition can not extract spatio-temporal features sufficiently and it is difficult to capture global context information,a human skeleton behavior recognition scheme based on spatio-temporal attention mechanism and adaptive graph convolution network is studied.Firstly,a spatio-temporal attention module based on non-local operation is constructed to assist the model to focus on the most discriminative frames and regions in the skeleton sequence;secondly,an adaptive graph convolution network is constructed by using the feature learning ability of Gaussian embedding function and lightweight convolution neural network,and considering the effect of human prior knowledge in different time periods;finally,the adaptive graph convolution network is used as the basic framework,the spatio-temporal attention module is embedded to construct two-stream fusion model with joint information,bone information and their respective motion information.The accuracy of the algorithm is 90.2%and 96.2%respectively under the two evaluation standards of NTU RGB+D dataset.The universality of the model is reflected in the large-scale dataset Kinetics,which verifies that the algorithm is proved to be superior in extracting spatio-temporal features and capturing global context information.
作者 张家想 刘如浩 金辰曦 卢先领 ZHANG Jiaxiang;LIU Ruhao;JIN Chenxi;LU Xianling(Key Laboratory for Advanced Process Control for Light Industry of the Education Ministry of China,Jiangnan University,Wuxi,Jiangsu 214122,China;School of Internet of Things,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《信号处理》 CSCD 北大核心 2021年第7期1226-1234,共9页 Journal of Signal Processing
基金 国家自然科学基金项目(61573167) 教育部科技发展中心“云数融合科教创新”基金(2017A13055)。
关键词 人体骨架 行为识别 非局部块 注意力机制 图卷积网络 human skeleton action recognition non-local block attention mechanism graph convolutional network
  • 相关文献

参考文献3

二级参考文献5

共引文献36

同被引文献12

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部