摘要
采用密度泛函理论的M06和MN15方法,结合自洽反应场理论的SMD模型方法,研究了水液相下两性α-丙氨酸二价锌(α-Ala·Zn^(2+))配合物的手性转变反应。主要考察了3个反应通道a、b和c,a通道是α-H以羰基O为桥迁移,b通道是α-H以Zn为桥迁移,c通道是α-H以氨基N为桥迁移。势能面研究表明,c通道的手性转变反应最具优势,决速步自由能垒是140.7 kJ·mol^(-1),来自α-H从α-C向氨基N迁移的过渡态;a通道的手性转变反应是第2优势通道,决速步自由能垒是159.9 kJ·mol^(-1),来自α-H从α-C向羰基O迁移的过渡态;b通道的手性转变反应为劣势通道,决速步自由能垒是194.2 kJ·mol^(-1),来自α-H从α-C向Zn迁移的过渡态。结果表明:水液相环境下的α-Ala·Zn^(2+)可以较好地保持手性特征。
The chiral transition of amphoteric α-alanine divalent zinc(α-Ala·Zn^(2+))complexes was studied by using the M06 and MN15 method based on SMD model method of self-consistent reaction field theory in Water/Liquid Phase. Three reaction pathways a,b and c were investigated. In pathway a,α-H is transferred using carbonyl O atom as a bridge. α-H is transferred with Zn atom and amino N atom as bridges in pathway b and c,respectively. Potential energy surface studies indicate that the chiral transition reaction in pathway c has the most advantage. The free energy barrier which comes from the transition state of α-H transfers from α-C to amino N atom is 164. 9 kJ·mol^(-1). The pathway a of the chiral transition reaction is the second dominant pathway. The free energy barrier which comes from the transition state of α-H transfers from α-C to Carbonyl O atom is 168. 9 kJ·mol^(-1). The pathway b of the chiral transition reaction is the disadvantaged pathway. The free energy barrier which comes from the transition state of α-H transfers from α-C to Zn atom is 194. 2 kJ·mol^(-1). The results show that α-Ala·Zn^(2+)can maintain its chiral characteristics well in Water/Liquid Phase.
作者
苏丹
孙玉锋
郝成欣
姜春旭
张雪娇
丛建民
王佐成
SU Dan;SUN Yufeng;HAO Chengxin;JIANG Chunxv;ZHANG Xuejiao;CONG Jianmin;WANG Zuocheng(Department of Pharmacy,Baicheng Medical College,Baicheng 137000,China;Quality Control Division,Baicheng Infectious Disease Hospital,Baicheng 137000,China;Theoretical Computing Center,Baicheng Normal University,Baicheng 137000,China;College of Life Science,Baicheng Normal University,Baicheng 137000,China)
出处
《中山大学学报(自然科学版)(中英文)》
CAS
CSCD
北大核心
2021年第4期50-59,共10页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
吉林省教育厅科学研究规划项目(JJKH20200002KJ)
吉林省科技发展计划自然科学基金(20160101308JC)。