期刊文献+

Zigzag Zinc Blende ZnS Nanowires:Large Scale Synthesis and Their Structure Evolution Induced by Electron Irradiation 被引量:5

原文传递
导出
摘要 Large scale zigzag zinc blende single crystal ZnS nanowires have been successfully synthesized during a vapor phase growth process together with a small yield of straight wurtzite single crystal ZnS nanowires.AuPd alloy nanoparticles were utilized to catalyze a vapor-solid-solid growth process of both types of ZnS nanowires,instead of the more common vapor-liquid-solid growth process.Surprisingly,the vapor-phase grown zigzag zinc blende ZnS nanowires are metastable under high-energy electron irradiation in a transmission electron microscope,with straight wurtzite nanowires being much more stable.Upon exposure to electron irradiation,a wurtzite ZnO nanoparticle layer formed on the zigzag zinc blende ZnS nanowire surface with concomitant displacement damage.Both electron inelastic scattering and surface oxidation as a result of electron-beam heating occur during this structure evolution process.When prolonged higher-voltage electron irradiation was applied,local zinc blende ZnS nanowire bodies evolved into ZnS-ZnO nanocables,and dispersed ZnS-ZnO nanoparticle networks.Random AuPd nanoparticles were observed distributed on zigzag ZnS nanowire surfaces,which might be responsible for a catalytic oxidation effect and speed up the surface oxidation-induced structure evolution.
机构地区 Department of Chemical
出处 《Nano Research》 SCIE EI CSCD 2009年第12期966-974,共9页 纳米研究(英文版)
基金 The authors are grateful for the financial support from the University of Connecticut New Faculty start-up funds,and the University of Connecticut Large Faculty Research Grant Acknowledgement is also made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research.
  • 相关文献

参考文献1

二级参考文献16

  • 1[1]L.E.Brus:J.Phys.Chem.,1986,90,2555. 被引量:1
  • 2[2]A.P.Alivisatos:Science,1996,271,933. 被引量:1
  • 3[3]J.I.Brauman:Science,1996,271,889. 被引量:1
  • 4[4]J.Schi(o)tz,F.D.D.Tolla and K.W.Jacobsen:Nature,1998,391,561. 被引量:1
  • 5[5]F.Himpsel,J.E.Ortega,G.J.Mankey and R.F.Willis:Adv.Phys.,1998,47,511. 被引量:1
  • 6[6]G.Schmid,M.Baumle,M.Geerkens,I.Heim,C.Osemann and T.Sawitowski:Chem.Soc.Rev.,1999,28,179. 被引量:1
  • 7[7]L.D.Sun,X.F.Fu,M.W.Wang,C.H.Liu,C.H.Liao and C.H.Yan:J.Lumin.,2000,87-89,538. 被引量:1
  • 8[8]S.B.Qadri,E.F.Skelton,J.Z.Hu,W.J.Kim,C.Nelson and B.R.Ratna:J.Appl.Phys.,2001,89,115. 被引量:1
  • 9[9]A.P.Alivisatos:J.Phys.Chem.,1996,100,13226. 被引量:1
  • 10[10]D.Serge,B.Luc and L.Ian:Phys.Rev.B,2000,61,8726. 被引量:1

同被引文献6

引证文献5

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部