摘要
讨论了一个带有Allee效应和Lévy噪声的Leslie-Gower模型,根据伊藤公式和随机微分方程的比较定理,研究了模型的全局正解的存在性,给出了种群均值稳定、均值持久生存以及灭绝的阈值条件.进一步讨论了随机模型解的随机最终有界性.最后,给出数值模拟来验证文中的结论.
A Leslie-Gower predator-prey model with Allee effect and Lévy noise is discussed. By virtue of Ito’s formula, comparison theorem for stochastic model, the existence of global positive solution for the model is studied, the threshold conditions for stable in the mean, permanence in the mean and extinction for the population are obtained. Furthermore, the ultimate boundedness of solution for stochastic model is discussed. In the end, numerical simulations are given to verify the results.
作者
王小攀
李爽
Wang Xiaopan;Li Shuang(College of Xinlian,Henan Normal University,Xinxiang 453007,China;College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)
出处
《河南师范大学学报(自然科学版)》
CAS
北大核心
2021年第5期12-18,共7页
Journal of Henan Normal University(Natural Science Edition)
基金
国家自然科学基金(11901059)。