摘要
针对闪电搜索算法在求解装配序列规划问题中求解精度低、易陷于局部最优的缺点,提出一种将闪电搜索算法和天牛须搜索算法结合的混合算法。算法前期使用闪电搜索算法对种群进行搜索,对于搜索后不满足几何可行性的个体用天牛须搜索算法进行优化,用天牛须搜索算法来提高闪电搜索算法的局部搜索能力,避免闪电搜索算法陷入局部最优,提高求解精度;用装配序列的几何可行性、稳定性、一致性、连贯性4个评价指标来构建适应度函数;以蒸汽发动机引擎为例,将混合算法与差分进化算法、闪电搜索算法、粒子群算法进行比较,从最优值迭代次数、适应度值、局部最优逃逸能力等方面进行分析,验证该混合算法的有效性。结果表明求解精度、跳出局部最优的能力方面混合算法明显优于其它三种算法,混合算法明显提高了求解精度和增强了跳出局部最优的能力。
Aiming at the problem that the lightning search algorithm is not high in accuracy and prone to local optimality in solving assembly sequence planning problems,a hybrid algorithm which combine the lightning search algorithm with the bettleantennate search algorithm is proposed.In the hybrid algorithm,the lightning search algorithm is used to search the population,then the bettleantennate search algorithm is used to optimize the individuals who do not meet the geometric feasibility after the search.The bettleantennate search algorithm can improve the local search ability of the lightning search algorithm,so as to avoid the lightning search algorithm falling into local optimization.The fitness function is constructed by the evaluation indexes such as geometric feasibility,stability,consistency and coherence of assembly sequence.The hybrid algorithm is verified by a type of steam engine.At last,the superiority of this hybrid algorithm is proved by comparing with the differential evolution algorithm,the lightning search algorithm and the particle swarm optimization algorithm.from four aspects which are the convergence speed,iteration times of optimal value,fitness value and local optimal escape ability.The results show that the hybrid algorithm is superior to the other three algorithms in terms of solving precision and jumping out of the local optimum.
作者
任云
刘丹
REN Yun;LIU Dan(Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education,Guizhou University,Guiyang 550025,China)
出处
《组合机床与自动化加工技术》
北大核心
2021年第7期160-164,共5页
Modular Machine Tool & Automatic Manufacturing Technique
基金
国家自然科学基金地区科学基金资助项目(51865004)。
关键词
装配序列规划
闪电搜索算法
天牛须算法
改进闪电搜索算法
assembly sequence planning
lightning search algorithm
bettleantennate search algorithm
improved lightning search algorithm