摘要
研究了离子辐照效应对CdZnTe(CZT)晶体光电性能的影响。采用Ar离子对改进的垂直布里奇曼法生长的CZT晶体进行辐照,剂量范围为1014-1015 cm^(-2)。红外透过光谱测试结果表明,辐照前晶体样品的高直型光谱转变为辐照后的上升性光谱。辐照诱导产生的高浓度自由载流子引起的光吸收在红外透过光谱的中红外范围内占主导地位。由于离子辐照发生在单侧照射面的近表面区域,辐照后晶体样品的I-V特性曲线变得极不对称。在负偏压的条件下,电流随着电压的增大而急剧增大。霍尔效应测试结果表明,辐照前晶体样品的净载流子浓度约为106 cm^(-3),而辐照后的净载流子浓度大幅增加,约为1016 cm^(-3)。CZT晶体的导电类型在离子辐照前后并没有发生变化,施主缺陷能级在辐照诱导缺陷中占主导地位。
Effects of ion beam irradiation defects on electrical and optical properties of CdZnTe(CZT) crystals were studied. CZT crystals grown by the modified vertical Bridgman method were irradiated by Ar heavy ions with fluences ranging from 1014 cm^(-2) to1015 cm^(-2). Results show that IR transmittance spectra vary from the high-straight type(before radiation) to the ascending type(after radiation), and light absorption by radiation induced free charge carriers occurs significantly in the mid-infrared light range. Currentvoltage(I-V) characteristic curve of the irradiated CZT crystals becomes extremely asymmetrical and current increases sharply with the increase of negative voltage due to single-surface irradiation in the near-surface area. Hall measurements show that the net carrier concentration largely increases from -106 cm^(-3)(before radiation) to -1016 cm^(-3)(after radiation), and the conduction type remains unchanged, since donor levels are considered to be the dominant among all the radiation-induced crystal defects.
作者
徐凌燕
刘哲
梁璐
Xu Lingyan;Liu Zhe;Liang Lu(State Key Laboratory of Solidification Processing,School of Materials Science and Engineering,Northwestern Polytechnical University,Xi'an 710072,China;Key Laboratory of Radiation Detection Materials and Devices,Ministry of Industry and Information Technology,School of Materials Science and Engineering,Northwestern Polytechnical University,Xi'an 710072,China)
出处
《稀有金属材料与工程》
SCIE
EI
CAS
CSCD
北大核心
2021年第6期1941-1945,共5页
Rare Metal Materials and Engineering
基金
National Key Research and Development Program of China (2016YFF0101301)
Supported by Heavy Ion Research Facility in Lanzhou (HIRFL)。
关键词
化合物半导体
辐照效应
电学性能
光学性能
semiconductors
radiation effects
electrical properties
optical properties