期刊文献+

可压缩Navier-Stokes方程三阶精度的求解

Solution of third order accuracy of compressible Navier-Stokes equation
下载PDF
导出
摘要 为提高可压缩Navier-Stokes方程求解精度,提出基于双线性奇异摄动特征分析的可压缩Navier-Stokes方程三阶精度的求解方法。构建方程的三阶统计特征量解析模型,通过参数奇异摄动抑制方法分解方程三阶特征,提取方程的边值特征分量,结合边界层校正项信息融合度解析方法实现可压缩Navier-Stokes方程三阶融合和自相关特征分析。通过模板匹配寻优方法,实现方程的三阶非线性时滞奇摄动控制,完成可压缩Navier-Stokes方程三阶精度求解。结果表明,所提方法的收敛性较好,稳定性较高。 In order to improve the solution accuracy of compressible Navier-Stokes equations,a method for solving the third order accuracy of compressible Navier-Stokes equations was proposed based on bilinear singular perturbation feature analysis.The third-order statistical eigenvalue analytical model of the equation was constructed,and the third-order features of the equation were decomposed by the parameter singular perturbation suppression method,and the boundary value eigencomponents of the equation were extracted.The third-order fusion and autocorrelation analysis of the compressible Navier-Stokes equation were achieved by combining the boundary layer correction information fusion degree analytical method.And the third-order nonlinear singular perturbation control of the equation is realized through the template matching optimization method,and the third-order precision solution of the compressible Navier-Stokes equation is completed.The analysis shows that the proposed method has good convergence and high stability.
作者 尚影 SHANG Ying(School of Primary Education,Fuyang Preschool Teachers College,Fuyang Anhui 236015,China)
出处 《阜阳师范大学学报(自然科学版)》 2021年第2期17-20,共4页 Journal of Fuyang Normal University:Natural Science
基金 国家自然科学基金项目(11626121)资助。
关键词 三阶精度 自相关特征分析 信息融合度 third-order accuracy autocorrelation feature analysis information integration degree
  • 相关文献

参考文献8

二级参考文献49

  • 1Jianzhong Xu 1,2,Zongfu Zhou 1 (1.Dept.of Math.,Bozhou Teachers College,Bozhou 236800,Anhui,2.School of Mathematical Sciences,Anhui University,Hefei 230039).EXISTENCE AND UNIQUENESS OF ANTI-PERIODIC SOLUTIONS TO AN nTH-ORDER NONLINEAR DIFFERENTIAL EQUATION WITH MULTIPLE DEVIATING ARGUMENTS[J].Annals of Differential Equations,2012,28(1):105-114. 被引量:13
  • 2MO JiaQi1,2 1 Anhui Normal University, Wuhu 241000, China,2 Division of Computational Science, E-Institutes of Shanghai Universities, at SJTU, Shanghai 200240, China.Homotopic mapping solving method for gain fluency of a laser pulse amplifier[J].Science China(Physics,Mechanics & Astronomy),2009,52(7):1007-1010. 被引量:124
  • 3Killbas A A, Srivastava H M, Trujillo J J. Theory and application of fractional differential equation. Amsterdam: Elsevier Science B V, 2006. 被引量:1
  • 4Bai Z B, Lü H S. Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl., 2005, 311(2): 495-505. 被引量:1
  • 5Bai Z B. On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal., 2010, 72(2): 916-924. 被引量:1
  • 6Wang Y Q, Liu L S, Wu Y H. Positive solutions for a class of fractional boundary value problem with changing sign nonlinearity. Nonlinear Anal., 2011, 74(17): 6434-6441. 被引量:1
  • 7Xu X J, Jiang D Q, Yuan C J. Multiple positive solutions for boundary value problems of a nonlinear fractional differential equation. Nonlinear Anal., 2009, 71(10): 4676-4688. 被引量:1
  • 8Zhao Y G, Sun S R, Han Z L, Zhang M. Positive solutions for boundary value problems of nonlinear fractional differential equations. Appl. Math.Commp., 2011, 217(16): 6950-6958. 被引量:1
  • 9Cabada A, Wang G T. Positive solutions of nonlinear fractional differential equations with integral boundary conditions. J. Math. Anal. Appl., 2012, 389(1): 403-411. 被引量:1
  • 10Krasnoselskii M A. Positive Solutions of Operator Equations. Groningen: Noordhoff, 1964. 被引量:1

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部