期刊文献+

一种改进K均值的小样本聚类算法 被引量:2

Small Sample Clustering Algorithm with Improved K-Means
下载PDF
导出
摘要 通过肘方法确定类别数,采取平方差半径法选择聚类种子中心,优化聚类中心的重新选择,采用熵权法对数据对象的属性赋权修正对象间的欧式距离,计算属性间的作用差异。结果表明,在类别数不变,添加异常数据后,对于维度低、类别间差异大的小样本数据,改进算法在执行效率几乎等同的情况下比原算法精确、稳定。 Firstly,the number of categories was determined by the elbow method,and then the square difference radius method was used to select the cluster seed center,and the re-selection of the cluster center was optimized.The entropy weight method was used to weight the attributes of the data objects to correct the Euclidean distance between the categories and calculate differences in the role of features.The results show that after the number of categories remains unchanged and abnormal data is added,for small sample data with low dimensions and large differences between types,the improved algorithm is more accurate and stable than the original algorithm with almost the same execution efficiency.
作者 刘畅 肖斌 蒋铁军 苏凯 何鹏翔 王成宇 LIU Chang;XIAO Bin;JIANG Tiejun;SU Kai;HE Pengxiang;WANG Chengyu(Department of Management Engineering and Equipment Economics, Naval University of Engineering, Wuhan 430033, China;Armed Police Second Mobile Corps, Fuzhou 350200, China)
出处 《兵器装备工程学报》 CSCD 北大核心 2021年第S01期266-270,共5页 Journal of Ordnance Equipment Engineering
基金 国家自然科学基金项目(61802425) 国家社会科学基金军事学项目(16GJ003-105)。
关键词 信息熵 K-MEANS 小样本 欧式距离 聚类中心 肘方法 误差平方和 聚类精确度 information entropy K-means small sample euclidean distance cluster center elbow method sum of squares of error clustering accuracy
  • 相关文献

参考文献5

二级参考文献44

  • 1张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 2钱线,黄萱菁,吴立德.初始化K-means的谱方法[J].自动化学报,2007,33(4):342-346. 被引量:32
  • 3袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:152
  • 4盛骤,谢式千,潘承毅.概率论与数理统计[M].2版.北京:高等教育出版社,1997:18-28. 被引量:1
  • 5Han Jiawei,Kamber M.Data Mining:Concepts and Techniques[M].2nd ed.Beijing,China:China Machine Press,2011. 被引量:1
  • 6Pena J M,Lozano J A,Larranaga P.An Empirical Comparison of Four Initialization Methods for the K Means Algorithm[J].Pattern Recognition Letters,1999,20(10):1027-1040. 被引量:1
  • 7Vance F.Clustering and the Continuous K-Means Algorithm[J].Los Alamos Science,1994,22:138-134. 被引量:1
  • 8Jain A K,Murty M N,Flynn P J.Data Clustering:A Review[J].ACM Computing Survey,1999,31 (3):264-323. 被引量:1
  • 9Kaufman L,Rousseeuw P J.Finding Groups in Data:An Introduction to Cluster Analysis[M].New York,USA:John Wiley & Sons,Inc.,1990. 被引量:1
  • 10Dhillon I S,Guan Yuqiang,Kogan J.Refining Clusters in High Dimensional Text Data[C]//Proceedings of the 2nd SIAM Workshop on Clustering High Dimensional Data.Arlington,USA:[s.n.],2002:59-66. 被引量:1

共引文献188

同被引文献37

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部