期刊文献+

A Gaussian process regression-based sea surface temperature interpolation algorithm 被引量:1

下载PDF
导出
摘要 The resolution of ocean reanalysis datasets is generally low because of the limited resolution of their associated numerical models.Low-resolution ocean reanalysis datasets are therefore usually interpolated to provide an initial or boundary field for higher-resolution regional ocean models.However,traditional interpolation methods(nearest neighbor interpolation,bilinear interpolation,and bicubic interpolation)lack physical constraints and can generate significant errors at land-sea boundaries and around islands.In this paper,a machine learning method is used to design an interpolation algorithm based on Gaussian process regression.The method uses a multiscale kernel function to process two-dimensional space meteorological ocean processes and introduces multiscale physical feature information(sea surface wind stress,sea surface heat flux,and ocean current velocity).This greatly improves the spatial resolution of ocean features and the interpolation accuracy.The eff ectiveness of the algorithm was validated through interpolation experiments relating to sea surface temperature(SST).The root mean square error(RMSE)of the interpolation algorithm was 38.9%,43.7%,and 62.4%lower than that of bilinear interpolation,bicubic interpolation,and nearest neighbor interpolation,respectively.The interpolation accuracy was also significantly better in off shore area and around islands.The algorithm has an acceptable runtime cost and good temporal and spatial generalizability.
出处 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第4期1211-1221,共11页 海洋湖沼学报(英文)
基金 Supported by the National Natural Science Foundation of China(Nos.41675097,41375113)。
  • 相关文献

参考文献4

二级参考文献31

  • 1Y D Song,B Dhinakaran,X.Bao.Control of Wind Turbines Using Nonlinear Adaptive Field Excitation Algorithms [A].Proceedings of the American Control Conference [C].Chicago,2000,3:1551-1555. 被引量:1
  • 2Iqbal,M T Coonick A,Ereris L L.Dynamic Control Options for Variable Speed Wind Turbines[J].Wind Engineering,1994,18(1):1-12. 被引量:1
  • 3E A.Bossanyi.Adaptive Pitch Control for A 250 kW Wind Turbine [A].Proc.British Wind Energy Conference [C].1986.85-92. 被引量:1
  • 4D J Leith,W E Leithead.Application of nonlinear control to a HAWT.[C].3rd IEEE Conference on Control Applications,August 1994,Glasgow UK,245-250. 被引量:1
  • 5Xin Ma.Adaptive Extremum Control and Wind Turbine Control [D].PhD thesis,Technical University of Denmark,1997. 被引量:1
  • 6Vapnik V N.The Nature of Statistical Learning Theory [M].New York:Springer-Verlag,1999.Second Edition. 被引量:1
  • 7J G.Slootweg,W L Kling,H Polinder.Dynamic modelling of a wind turbine with doubly fed induction generator[J].IEEE Power Engineering Society Summer Meeting,2001,1:644 -649. 被引量:1
  • 8Suykens J.A.K,Vandewalle J.Least squares support vector machines classifiers [J].Neural Network Letters,1999,19(3):293-300. 被引量:1
  • 9Suykens J A K,J De Brabanter,et al.Weighted Least Squares Support Vector Machines:robustness and sparse approximation[Z].Neurocomputing 2000,special issue. 被引量:1
  • 10Hampel F R,Ronchetti E M,et al.Robust statistics:the approach based on influence functions [M].John Wiley & Sons,New York,1986. 被引量:1

共引文献42

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部