期刊文献+

基于L-M算法的液体火箭推力室壁面热流密度测量方法 被引量:1

Method to Measure Wall Heat Flux of Liquid Rocket Thrust Chambers Based on L-M Algorithm
下载PDF
导出
摘要 为获取液体火箭推力室热防护方案构建的基础数据,结合单点瞬态法,提出了基于L-M算法测量壁面热流密度的方法。通过模拟热流密度分析算法中关键参数对求解精度的影响,给出关键参数的选取建议。在此基础上,对过氧化氢煤油推力室典型试验工况进行热流密度测量。结果表明:圆筒段末端壁面热流密度为3.35MW/m^(2),喉部位置单组元工况下壁面热流密度为2.21MW/m^(2),双组元工况下壁面热流密度为10.59MW/m^(2),热流密度变化过程与室压变化过程完全对应。变工况过程中近壁处燃气温度存在恢复过程,燃气温度稳定后,壁面热流密度也达到稳定状态。本文提出的方法可迅速、准确地测量推力室壁面热流密度。 To obtain basic data for designing thermal protection of liquid rocket thrust chambers,a method to measure wall heat flux based on L-M algorithm was proposed,which could be implemented with the transient temperature data obtained by a thermocouple. And through simulation heat flux comparison and discussion,the key parameters’ value suggestion which would influence the solution accuracy was also given. Then,apply it in the typical hot firing test of a hydrogen peroxide biopropellant thrust chamber. The results indicate that wall heat flux at the end of cylinder is 3.35 MW/m^(2). The wall heat flux at throat is 2.21 MW/m^(2) in the monopropellant mode and 10.59 MW/m^(2) in the bipropellant mode,which matches the change process of chamber pressure well. The gas temperature near the wall will recover for a certain time when the test condition changes.After the gas temperature stabilizes,the wall heat flux also reaches a steady state. The proposed method can be used to measure the wall heat flux rapidly and accurately.
作者 韩兆鹏 韩亚威 刘亚冰 韦宝禧 冮强 HAN Zhao-peng;HAN Ya-wei;LIU Ya-bing;WEI Bao-xi;GANG Qiang(Science and Technology on Scramjet Laboratory,Beijing Power Machinery Institute,Beijing 100074,China)
出处 《推进技术》 EI CAS CSCD 北大核心 2021年第7期1643-1651,共9页 Journal of Propulsion Technology
关键词 推力室 热防护 L-M算法 壁面热流密度 过氧化氢 Thrust chamber Thermal protection L-M algorithm Wall heat flux Hydrogen peroxide
  • 相关文献

参考文献7

二级参考文献32

  • 1刘高典.温度场的数值模拟[M].重庆:重庆大学出版社,1988.1-4. 被引量:3
  • 2Bayo E, Moulin H, Crisalle O,et al. Well-conditoned numerical approach for the solution of the inverse heat conduction problem[J]. Numerical Heat Transfer,Part B,1992,21:79~98 被引量:1
  • 3Carasso A S. Slowly divergent space marching schemes in the inverse conduction problem. Numerical Heat Transfer,Part B,1993,23:111~126 被引量:1
  • 4Hensel E, Hills R. Steady-state two-dimensional inverse heat conduction. Numerical Heat Transfer,Part B,1989,15:227~240 被引量:1
  • 5Tseng A A, Chen T C, Zhao F Z. Direct sensitivity coefficient method for solving two-dimensional inverse heat conduction problems by finite-element scheme. Numerical Heat Transfer Part B,1995,27:291~307 被引量:1
  • 6Lesnic D, Ellioot L, Ingham D B. Application of the boundary element method to inverse heat conduction problems[J]. Int J Heat Mass Transfer ,1996,39(7):1503~1517 被引量:1
  • 7(苏)吉洪诺夫, 阿尔先宁. 不适定问题的解法[M]. 北京:地质出版社,1979.20~31 被引量:1
  • 8Huang Chenghung, Chen Chinwei. A boundary-element-based inverse problem of estimating boundary conditions in an irregular domain with statistical analysis[J]. Numerical Heat Transfer,Part B,1998,33:251~268 被引量:1
  • 9Khachfe R A, Jarny Y. Numerical solution of 2-D nolinear inverse heat conduction problems using finite-element techniques[J]. Numerical Heat Transfer,Part B,2000,37:45~67 被引量:1
  • 10Lewis R W, Morgan K, Thomas H R. The finite element method in heat transfer analysis[M]. UK:JOHN WILEY & SONS,1996.11~29 被引量:1

共引文献26

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部