期刊文献+

A Missing Power Data Filling Method Based on Improved Random Forest Algorithm 被引量:10

原文传递
导出
摘要 Missing data filling is a key step in power big data preprocessing,which helps to improve the quality and the utilization of electric power data.Due to the limitations of the traditional methods of filling missing data,an improved random forest filling algorithm is proposed.As a result of the horizontal and vertical directions of the electric power data are based on the characteristics of time series.Therefore,the method of improved random forest filling missing data combines the methods of linear interpolation,matrix combination and matrix transposition to solve the problem of filling large amount of electric power missing data.The filling results show that the improved random forest filling algorithm is applicable to filling electric power data in various missing forms.What’s more,the accuracy of the filling results is high and the stability of the model is strong,which is beneficial in improving the quality of electric power data.
出处 《Chinese Journal of Electrical Engineering》 CSCD 2019年第4期33-39,共7页 中国电气工程学报(英文)
基金 Supported by the State Grid Power Company of Hunan Province Science and Technology Project(No.5216A517000U).
  • 相关文献

参考文献2

二级参考文献23

  • 1吴立增,朱永利,苑津莎.基于贝叶斯网络分类器的变压器综合故障诊断方法[J].电工技术学报,2005,20(4):45-51. 被引量:57
  • 2Rukshan Batuwita,Vasile Palade.FSVM-CIL: fuzzy support vector machines for class imbalance learning. IEEE Transactions on Fuzzy Systems . 2010 被引量:1
  • 3IEEE guide for the interpretation of gases generated in oil-immersed transformers. IEEE Standard C57.104—2008 . 2008 被引量:1
  • 4Xiaowei Yang,Guangquan Zhang,Jie Lu,Jun Ma.A Kernel Fuzzy c-Means Clustering-Based Fuzzy Support Vector Machine Algorithm for Classification Problems With Outliers or Noises. IEEE Transactions on Fuzzy Systems . 2011 被引量:2
  • 5Chiara Brighenti,Miguel á. Sanz-Bobi.Auto-Regressive Processes Explained by Self-Organized Maps. Application to the Detection of Abnormal Behavior in Industrial Processes. IEEE Transactions on Neural Networks . 2011 被引量:1
  • 6Chen, Jiyi,Li, Wenyuan,Lau, Adriel,Cao, Jiguo,Wang, Ke.Automated load curve data cleansing in power systems. IEEE Transactions on Smart Grid . 2010 被引量:1
  • 7Messina A R,Vittal V.A structural time series approach to modeling dynamic trends in power system data. Proceedings of 2012 IEEE Power and Energy Society General Meeting . 2012 被引量:1
  • 8BRANDT P T,WILLIAMS J T.Multivariate time series model. . 2006 被引量:1
  • 9何晓萍,刘希颖,林艳苹.中国城市化进程中的电力需求预测[J].经济研究,2009,44(1):118-130. 被引量:147
  • 10张金江,郭创新,曹一家,孙旻,辛建波,钱维忠,杨健.变电站设备状态监测系统及其IEC模型协调[J].电力系统自动化,2009,33(20):67-72. 被引量:51

共引文献95

同被引文献158

引证文献10

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部