摘要
Conductivity s and thermal conductivity k are directly related to carrier concentration while Seebeck coefficient S is inversely proportional to carrier concentration.Therefore,improving thermoelectric(TE)performance is challenging.Here,the first-time analysis of secondary phase-controlled TE performance in terms of density-of-state effective mass m*d,weighted mobility mw and quality factor B is discussed in ZnO system.The results show that the secondary spinel phase Ga2O_(3)(ZnO)9 not only impacts on k but also on s and S at high temperature,while the effect of carrier concentration seem to be dominant at low temperature.For the high-spinel-segregation sample,a compensation of dopant atoms from the spinel to substitutional sites in the ZnO matrix at high temperature leads to a low decreased rate of temperaturedependent m*d.The compensation process also induces a band sharpening,a small mw reduction,and a large B enhancement.As a result,In and Ga co-doped ZnO bulk with the highest spinel segregation achieves the greatest PF improvement by 112.8%,owing to enhanced Seebeck coefficient by 110%as compared to the good Zn-substitution sample.
基金
supported by the Vietnam Ministry of Science and Technology under grant numberÐTÐL.CN-23/18.