期刊文献+

Convergence and Quasi-Optimality of an Adaptive Multi-Penalty Discontinuous Galerkin Method

原文传递
导出
摘要 An adaptive multi-penalty discontinuous Galerkin method(AMPDG)for the diffusion problem is considered.Convergence and quasi-optimality of the AM-PDG are proved.Compared with the analyses for the adaptive finite element method or the adaptive interior penalty discontinuous Galerkin method,extra works are done to overcome the difficulties caused by the additional penalty terms.
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2016年第1期51-86,共36页 高等学校计算数学学报(英文版)
基金 This research was partially the National Natural Science Foundation of China under grants 11525103 and 91130004.
  • 相关文献

参考文献1

二级参考文献1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部