期刊文献+

Data mining-aided materials discovery and optimization 被引量:13

原文传递
导出
摘要 Recent developments in data mining-aided materials discovery and optimization are reviewed in this paper,and an introduction to the materials data mining(MDM)process is provided using case studies.Both qualitative and quantitative methods in machine learning can be adopted in the MDM process to accomplish different tasks in materials discovery,design,and optimization.State-of-the-art techniques in data mining-aided materials discovery and optimization are demonstrated by reviewing the controllable synthesis of dendritic Co_(3)O_(4) superstructures,materials design of layered double hydroxide,battery materials discovery,and thermoelectric materials design.The results of the case studies indicate that MDM is a powerful approach for use in materials discovery and innovation,and will play an important role in the development of the Materials Genome Initiative and Materials Informatics.
出处 《Journal of Materiomics》 SCIE EI 2017年第3期191-201,共11页 无机材料学学报(英文)
基金 Financial supports to this work from National Key Research and Development Program of China(No.2016YFB0700504,2017YFB0701600) Science and Technology Commission of Shanghai Municipality of China(No.15DZ2260300 and No.16DZ2260600)are gratefully acknowledged.
  • 相关文献

二级参考文献3

共引文献12

同被引文献64

引证文献13

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部