期刊文献+

面向多机协同的Att-MADDPG围捕控制方法设计 被引量:3

Design of Att-MADDPG Hunting Control Method for Multi-UAV Cooperation
下载PDF
导出
摘要 多无人机对动态目标的围捕是无人机集群作战中的重要问题。针对面向动态目标的集群围捕问题,通过分析基于MADDPG算法的围捕机制的不足,借鉴Google机器翻译团队使用的注意力机制,将注意力机制引入围捕过程,设计基于注意力机制的协同围捕策略,构建了相应的围捕算法。基于AC框架对MADDPG进行改进,首先,在Critic网络加入Attention模块,依据不同注意力权重对所有围捕无人机进行信息处理;然后,在Actor网络加入Attention模块,促使其他无人机进行协同围捕。仿真实验表明,Att-MADDPG算法较MADDPG算法的训练稳定性提高8.9%,任务完成耗时减少19.12%,经学习后的围捕无人机通过协作配合使集群涌现出更具智能化围捕行为。 The hunting of dynamic targets by multi-UAV is an important problem in UAV swarm operations.In this paper,aiming at the dynamic target oriented swarm hunting problem,by analyzing the shortcomings of the hunting mechanism based on MADDPG algorithm,and learning from the attention mechanism used by Google machine translation team,we introduce the attention mechanism into the hunting process,design the cooperative hunting strategy based on the attention mechanism,and construct the corresponding hunting algorithm.Improve MADDPG based on AC framework.First of all,the attention module is added to critical network to process the information of all UAVs according to different attention weights;then,the attention module is added to actor network to promote other UAVs to carry out cooperative hunting.The simulation results show that Att-MADDPG algorithm can improve the training stability by 8.9%and reduce the task completion time by 19.12%compared with MADDPG algorithm.After learning,the UAV can cooperate to make the swarm emerge more intelligent behavior.
作者 刘峰 魏瑞轩 丁超 姜龙亭 李天 LIU Feng;WEI Ruixuan;DING Chao;JIANG Longting;LI Tian(Aeronautical Engineering College,Air Force Engineering University,Xi’an 710051,China)
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2021年第3期9-14,共6页 Journal of Air Force Engineering University(Natural Science Edition)
基金 科技部“新一代人工智能”重点项目(2018AAA0102403)。
关键词 协同围捕 强化学习 MADDPG 智能性涌现 cooperative hunting reinforcement learning MADDPG intelligence emergence
  • 相关文献

参考文献9

二级参考文献48

  • 1王俭,肖金球,赵鹤鸣.目标信号导航的机器人路径二次优化[J].电子测量与仪器学报,2007,21(5):73-76. 被引量:2
  • 2YANG S, MENG M. An efficient neural network ap- proach to dynamic robot motion planning [ J ]. Neural Networks, 2000 13 (2) : 143-148. 被引量:1
  • 3SUGIHARA K, SMITH J. Genetic algorithms for adap- tive motion planning of an autonomous mobile robot [ C ]. IEEE International Symposium on Computational Intelligence in Robotics and Automation, Monterey, CA, 1997,138-143. 被引量:1
  • 4YONG T, QING L, LI J W. An improved PSO for path planning of mobile robots and its parameters discussion [ C ]. International Conference on Intelligent Control and Information Processing, Dalian, China, 2010: 34-38. 被引量:1
  • 5AGILI S, BJORNBERG D B, MORALES A. Optimized search over the Gabor dictionary for note decomposition and recognition [ J ]. Journal of the Franklin Institute, 2007, 344 (7) : 969-990. 被引量:1
  • 6YU W, PENG J, ZHANG X, et al. An adaptive unscent- ed particle filter algorithm through relative entropy for mobile robot self-localization [ J ]. Mathematical Prob- lems in Engineering, 2013, 23(7) :1256-1271. 被引量:1
  • 7CHAKRABORTY J, KONAR A, UDAY K. Chakraborty distributed cooperative multi-robot path planning using differential evolution[ J]. IEEE Congress on Evolutionary Computation, 2008 : 718-725. 被引量:1
  • 8MARQUES L, NUNES U, DEALMEIDA A T. Particle swarm-based olfactory guided search [ J ]. Autonomous Robotics, 2006 (20) :277-287. 被引量:1
  • 9ZHUANG Q, xu s, cuI z. Design to experimental platform for swarm robotic search [ J]. Journal of Bioin- formatics and Intelligent Control,2013,2( 1 ):65-72. 被引量:1
  • 10李丹勇,宋永端.面向任务的多机器人协调运动控制[J].控制工程,2010,17(S1):117-120. 被引量:2

共引文献169

同被引文献27

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部