期刊文献+

基于光学频率梳的超低噪声微波频率产生 被引量:2

Ultra-low noise microwave frequency generation based on optical frequency comb
下载PDF
导出
摘要 低噪声的微波频率在雷达,长基线干涉仪等领域有重要应用.基于光学频率梳产生的微波信号的相位噪声在1 Hz频偏处低于-100 dBc/Hz,在高频(>100 kHz)处低于-170 dBc/Hz,是目前所有的微波频率产生技术中噪声最低的.文章介绍了光学频率梳产生微波频率的基本原理,对基于光梳产生的微波频率信号的各类噪声和抑制噪声的技术进行了分析和总结.随后对低噪声的测量方法进行介绍,并展示了几种典型的微波频率产生实验装置和结果.随着光学频率梳和噪声抑制技术的不断提升,基于光梳的极低噪声微波频率源将有更广泛的应用前景和应用领域. Low noise microwave frequency has important applications in radar,long baseline interferometer and other fields.The phase noise of microwave signal generated by optical frequency comb is lower than-100 dBc/Hz at 1 Hz frequency offset and-170 dBc/Hz at high frequencies(>100 kHz),which is the lowest in the noise produced by all existing microwave frequency generation technologies.This paper introduces the basic principle of optical frequency comb generating microwave frequency,analyzes and summarizes various kinds of noise of microwave frequency signals and noise suppressing technologies.Then the low noise measuring methods are introduced,and several typical experimental devices generating microwave frequency and the obtained results are described.With the continuous improvement of optical frequency comb and noise suppression technology,microwave frequency source with very low noise will have wider application prospects and application fields.
作者 邵晓东 韩海年 魏志义 Shao Xiao-Dong;Han Hai-Nian;Wei Zhi-Yi(Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2021年第13期97-110,共14页 Acta Physica Sinica
基金 中国科学院战略重点研究计划(批准号:XDA1502040404,XDB21010400)资助的课题。
关键词 光学频率梳 微波频率产生 微波光子学 相位噪声 optical frequency comb microwave frequency generation microwave photonics phase noise
  • 相关文献

参考文献1

二级参考文献33

  • 1Apolonski A, Poppe A et al. Phys. Rev. Lett., 2000,85(4): 740. 被引量:1
  • 2Jones D J, Diddams S A et al. Science, 2000,288 : 635. 被引量:1
  • 3Hinkley N, Sherman J A et al. Science, 2013,341 : 1215. 被引量:1
  • 4Huang Y, Guan H et al. Phys. Rev. Lett., 2016, 116 : 013001. 被引量:1
  • 5I-Ientschel M, Kienberger R et al. Nature, 2001,14: 509. 被引量:1
  • 6Kienberger R, Hentschel Met al. Science, 2002,297 : 1144. 被引量:1
  • 7Fortier T M, Ashby N, Bergquist J C. Phys. Rev. Lett., 2007,98 : 070801. 被引量:1
  • 8Parthey C G, Matveev A et al. Phys. Rev. Lett., 2010, 104 : 33001. 被引量:1
  • 9Giorgetta F R, Swann W C et al. Nature Photonics, 2013,7: 434. 被引量:1
  • 10Braje D A, Kirchner M Set al. European Physical Journal D, 2008,48 : 57. 被引量:1

共引文献3

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部