期刊文献+

2014-2019年深圳市肾综合征出血热疫情流行特征及趋势预测分析 被引量:2

Epidemiological characteristics and trend prediction on hemorrhagic fever with renal syndrome in Shenzhen from 2014 to 2019
原文传递
导出
摘要 目的分析2014-2019年深圳市肾综合征出血热(hemorrhagic fever with renal syndrome,HFRS)流行特征及规律,并探讨季节性求和自回归移动平均模型(Seasonal Autoregressive Integrated Moving Average,SARIMA)模型在预测深圳市HFRS发病趋势的可行性,为制定有效防控方案提供理论依据。方法采用描述性流行病学和时间序列分析等方法,利用IBM SPSS 23.0和Eviews 10.0软件探究2014-2019年深圳市HFRS疫情特征,并根据2014-2018年HFRS各月发病数建立SARIMA模型,利用2019年月发病数检验模拟预测效果,再根据2014-2019年HFRS月发病数预测2020年HFRS发病数。结果2014-2019年深圳市HFRS疫情整体呈现高度散发态势,累计报告病例300例,年均发病率为0.42/10万,无死亡病例报告。6年间,除大鹏新区外,其他各区均有病例发生。发病率最高的3个辖区依次是罗湖区(0.62/10万)、宝安区(0.52/10万)和南山区(0.49/10万)。流行高峰期为每年的1-4月(主高峰)和10-12月(次高峰)。发病以男性为主,年龄以20~49岁人群为主,占发病总数的77.0%;职业分布以工人、家务待业和商业服务人员为主,占总体的73.9%。SARIMA(0,1,1)(0,1,1)_(12)模型对HFRS疫情发病数拟合效果优,预测2020年1-12月深圳市HFRS发病数为25例。结论自2014年深圳市HFRS疫情呈现逐年下降的趋势,这可能与深圳市近年采取的以消灭"四害"为主的综合防治措施有关。SARIMA模型能较好地模拟深圳市HFRS发病数在时间上的变动趋势,可用于深圳市HFRS短期发病数的预测研究。 Objective To analyze the epidemiological characteristics and regularities of hemorrhagic fever with renal syndrome(HFRS)in Shenzhen from 2014 to 2019,and to discuss the feasibility of Seasonal Autoregressive Integrated Moving Average(SARIMA)model in predicting the number of HFRS cases for providing a theoretical basis of effective prevention and control measures of HFRS incidence trend.Methods The descriptive epidemiology,time series analysis and other methods was adopted,characteristics of HFRS incidences were analyzed,SARIMA model was established by utilizing IBM SPSS 23.0 and Eviews 10.0 software based on the monthly incidences of HFRS from 2014 to 2018.The effects were checked,simulated and predicted by comparing actual cases based on the attack cases.The number of HFRS cases from 2014 to 2019 was used to predict that in 2020.Results Overall HFRS epidemics in Shenzhen were manifested as highly sporadic,a total of 300 cases free of death case with average annual incidence at 0.42/100000 from 2014 to 2019 were reported.During the past 6 years,the cases have been reported in districts annually except for Dapeng New District.The top three districts with the highest incidence were Luohu District(0.62/100000),Baoan District(0.52/100000)and Nanshan District(0.49/100000).The epidemic peak period extended from January to April(main peak)and October to December(secondary were reported).Major patients were males and 20-49 years old,accounting for 77.0%of total cases.Workers,housekeepers and business service workers were main occupational populations,accounting for 73.9%of all walks of life.The SARIMA model(0,1,1)(0,1,1)_(12) model had a good fitting effect on HFRS incidences.Twenty five HFRS cases were predicted in Shenzhen in 2020.Conclusion Shenzhen HFRS epidemics show an annually downward trend since 2014,indicating that HFRS epidemics have been effectively controlled recently.The SARIMA model can simulate the change trend of HFRS incidences in Shenzhen accurately,and it can be applied to predict the short-term HFRS
作者 程聪 陈志高 李媛 廖玉学 万佳 梅树江 尹凌 CHENG Cong;CHEN Zhi-gao;LI Yuan;LIAO Yu-xue;WAN Jia;MEI Shu-jiang;YIN Ling(Institute of Infectious Disease Control and Prevention of Shenzhen Center for Disease Control and Prevention,Guangdong 518055,China;不详)
出处 《医学动物防制》 2021年第6期517-521,共5页 Journal of Medical Pest Control
基金 国家自然科学基金面上项目(41771441) 深圳市医学重点学科(SZXK064)。
关键词 时间序列 季节性求和自回归移动平均模型 肾综合征出血热 流行特征 疫情 预测 Time series Seasonal autoregressive integrated moving average model Hemorrhagic fever with renal syndrome Epidemiological characteristics Epidemics Prediction
  • 相关文献

参考文献15

二级参考文献106

共引文献213

同被引文献32

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部