期刊文献+

On the generalized Chern conjecture for hypersurfaces with constant mean curvature in a sphere 被引量:2

原文传递
导出
摘要 Let M be a compact hypersurface with constant mean curvature in Denote by H and S the mean curvature and the squared norm of the second fundamental form of M,respectively.We verify that there exists a positive constantγ(n)depending only on n such that if|H|≤γ(n)andβ(n,H)≤S≤β(n,H)+n/18,then S≡β(n,H)and M is a Clifford torus.Here,β(n,H)=n+n^(3)/2(n-1)H^(2)+n(n-2)/2(n-1)(1/2)n^(2)H^(4)+4(n-1)H^(2).
出处 《Science China Mathematics》 SCIE CSCD 2021年第7期1493-1504,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11531012) China Postdoctoral Science Foundation(Grant No.BX20180274) Natural Science Foundation of Zhejiang Province(Grant No.LY20A010024)。
  • 相关文献

共引文献3

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部