期刊文献+

Robust Optimal Operation of Active Distribution Network Based on Minimum Confidence Interval of Distributed Energy Beta Distribution 被引量:12

原文传递
导出
摘要 With the gradual increase of distributed energy penetration,the traditional optimization model of distribution network can no longer guarantee the stable and efficient operation of the distribution network.In order to deal with the inevitable uncertainty of distributed energy,a new robust optimal operation method is proposed for active distribution network(ADN)based on the minimum confidence interval of distributed energy Beta distribution in this paper.First,an ADN model is established with second-order cone to include the energy storage device,capacitor bank,static var compensator,on-load tap changer,wind turbine and photovoltaic.Then,the historical data of related distributed energy are analyzed and described by the probability density function,and the minimum confidence interval is obtained by interval searching.Furthermore,via taking this minimum confidence interval as the uncertain interval,a less conservative two-stage robust optimization model is established and solved for ADN.The simulation results for the IEEE33-bus distribution network have verified that the proposed method can realize a more stable and efficient operation of the distribution network compared with the traditional robust optimization method.
出处 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第2期423-430,共8页 现代电力系统与清洁能源学报(英文)
基金 supported in part by the National Natural Science Foundation of China(No.61703081) the Liaoning Joint Fund of National Natural Science Foundation of China(No.U1908217) the Natural Science Foundation of Liaoning Province(No.20170520113) the Fundamental Research Funds for the Central Universities(No.N2004016)。
  • 相关文献

参考文献3

二级参考文献30

  • 1Wenxia LIU,Shuya NIU,Huiting XU.Optimal planning of battery energy storage considering reliability benefit and operation strategy in active distribution system[J].Journal of Modern Power Systems and Clean Energy,2017,5(2):177-186. 被引量:26
  • 2Bessa R J, Miranda V, Gama J. Entropy and correntropy against minimum square error in offiine and online three-day ahead wind power forecasting[J]. IEEE Trans. on Power Systems, 2009, 24(4): 1657-1666. 被引量:1
  • 3Sideratos G., Hatziargyriou N D. Probabilistic wind power forecasting using radial basis function neural networks[J]. IEEE Trans. on Power Systems, 2012, 27(4): 1788-1796. 被引量:1
  • 4Lobo M G., Sanchez I. Regional wind power forecasting based on smoothing techniques, with application to the Spanish peninsular system[J]. IEEE Trans. on Power Systems, 2012, 27(4): 1990-1997. 被引量:1
  • 5Castronuovo E D, Peas L J A. On the optimization of the daily operation of a wind-hydro power plant[J]. IEEE Trans. onPower Systems, 2004, 19(3): 1599-1606. 被引量:1
  • 6Ronan Doherty, Mark O'Malley. A new approach to quantify reserve demand in systems with significant installed wind capacity[J]. IEEE Trans. on Power Systems, 2005, 20(2): 587-595. 被引量:1
  • 7Francois Bouffard, Galiana F D. Stochastic security for operations planning with significant wind power generation[J]. IEEE Trans. on Power Systems, 2008, 23(2): 306-316. 被引量:1
  • 8Bofinger S, Luig A, Beyer H G. Qualification of wind power forecasts[C]//Global Wind Power Conference. Paris, France, 2002: 2-5. 被引量:1
  • 9Fabbri A, Roman T G S, Abbad J R, et al. Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market[J]. IEEE Trans. on Power Systems, 2005, 20(3): 1440-1446. 被引量:1
  • 10Bludszuweit H, Dominguez-Navarro J A, Llombart A. Statistical analysis of wind power forecast error[J]. IEEE Trans. on Power Systems, 2008, 23(3): 983-991. 被引量:1

共引文献63

同被引文献151

引证文献12

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部