期刊文献+

On Symmetric Cayley Graphs of Valency Eleven

原文传递
导出
摘要 A Cayley graph Г=Cay(G,S)is said to be normal if G is normal in Aut Г.In this paper,we investigate the normality problem of the connected 11-valent symmetric Cayley graphs Г of finite nonabelian simple groups G,where the vertex stabilizer A_(u) is soluble for A=Aut Г and v∈∨Г.We prove that either Г is normal or G=A_(5),A_(10),A_(54),A_(274),A_(549) or A_(1099).Further,11-valent symmetric nonnormal Cayley graphs of As,A54 and A274 are constructed.This provides some more examples of nonnormal 11-valent symmetric Cayley graphs of finite nonabelian simple groups after the first graph of this kind(of valency 11)was constructed by Fang,Ma and Wang in 2011.
出处 《Algebra Colloquium》 SCIE CSCD 2021年第2期309-318,共10页 代数集刊(英文版)
基金 supported by the National Natural Science Foundation of China(11701503,11861076,12061089,11761079) Yunnan Applied Basic Research Projects(2018FB003,2019FB139) the third author was supported by the National Natural Science Foundation of China(11601263,11701321).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部