期刊文献+

基于隐马尔可夫链的自适应MODE及应用 被引量:4

Self-Adaptive MODE Based on Hidden Markov Chain and Application
下载PDF
导出
摘要 不同的控制参数设定和生成策略(交叉和变异)都会对多目标差分进化算法的性能产生显著影响。为实现其控制参数和变异策略的实时自适应调整,提出一种基于隐马尔可夫链的自适应多目标差分进化算法。该算法利用隐马尔可夫模型对种群信息进行分析并得到最优序列,通过最优序列与实际状态序列的对比得出变异缩放因子F与交叉概率CR的最大似然估计值,从而实现控制参数的自适应调整;同时,通过隐马尔可夫模型得到一组策略链来辅助多目标差分进化算法来选择合适的变异策略。通过与其他9种多目标进化算法在16个测试函数上的对比研究,结果表明所提算法的整体性能优于其他比较算法。最后,将该算法用于求解海铁联运能耗优化问题,所得结果能够为决策者提供多种可行方案。 The performance of multi-objective differential evolution algorithm is significantly influenced by its parameter settings and generation strategies(crossover and mutation). To implement real-time adaptive adjustment of control parameters and mutation strategies, a self-adaptive multi-objective differential evolution algorithm based on hidden Markov chain is proposed in the current study. A hidden Markov model is used to analyze the population information and then the optimal sequence is obtained. By comparing the optimal sequence with the actual state sequence, the maximum likelihood estimation values of mutation scaling factor Fand crossover probability CR are obtained to automatically generate suitable parameters. Moreover, a set of strategy chains are obtained by a hidden Markov model to assist multi-objective differential evolution algorithm in selecting an appropriate mutation strategy. Compared with other nine multi-objective evolutionary algorithms on 16 test functions, the results show that the overall performance of the proposed algorithm is better than that of other compared algorithms. Finally, the algorithm is applied to solve the energy consumption optimization problem of sea-rail intermodal transportation, and the obtained results can provide different feasible schemes for decision makers.
作者 崔彩霞 毕超超 范勤勤 CUI Caixia;BI Chaochao;FAN Qinqin(Institute of Logistics Science and Engineering,Shanghai Maritime University,Shanghai 201306,China;Logistics Research Center,Shanghai Maritime University,Shanghai 201306,China;School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第14期83-94,共12页 Computer Engineering and Applications
基金 国家重点研发计划(2016YFC0800200) 国家自然科学基金(61603244) 中国博士后科学基金(2018M642017)。
关键词 多目标优化 差分进化算法 隐马尔可夫链 海铁联运 能耗优化 multi-objective optimization differential evolution algorithm hidden Markov chain sea-rail intermodal transportation energy consumption optimization
  • 相关文献

参考文献9

二级参考文献108

  • 1刘金义,刘爽.Voronoi图应用综述[J].工程图学学报,2004,25(2):125-132. 被引量:74
  • 2张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:224
  • 3杨俊安,庄镇泉.量子遗传算法研究现状[J].计算机科学,2003,30(11):13-15. 被引量:54
  • 4席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用,1996,13(6):697-708. 被引量:346
  • 5张超勇,饶运清,李培根,邵新宇.柔性作业车间调度问题的两级遗传算法[J].机械工程学报,2007,43(4):119-124. 被引量:105
  • 6Store R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. J of Global Optimization, 1997, 11(4): 341-359. 被引量:1
  • 7Zhang Chun-mei, Chen Jie, Xin Bin, et al. Differential evolution with adaptive population size combining lifetime and extinction mechanisms[C]. The 8th Asian Control Conf. Kaohsiung: IEEE, 2011: 1221-1226. 被引量:1
  • 8Xin Bin, Chen Jie, Zhang Jia, et al. Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: A review and taxonomy[J]. IEEE Trans on Systems Man and Cybernetics, Part C: Applications and Reviews, 2012, 42(5): 744-767. 被引量:1
  • 9Tasoulis D K, Pavlidis N G, Plagianakos V P, et al. Parallel differential evolution[C]. IEEE Congress on Evolutionary Computation. Portland: IEEE, 2004: 2023-2029. 被引量:1
  • 10Kozlov K N, Sanderson A C. New migration scheme for parallel differential evolution[C]. Int Conf on Bioinformatics of Genome Regulation and Structure. Novosibrirsk: Springer, 2006: 141-144. 被引量:1

共引文献114

同被引文献33

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部