摘要
采用流变学手段、非等温差示扫描量热法和原位升温傅里叶变换红外光谱法研究了2种环氧树脂灌封料的固化动力学,并对其固化工艺进行设计与验证。采用Kissinger和Flynn-Wall-Ozawa方程计算得到2种灌封料的平均表观活化能分别为70.76 kJ/mol和61.61 kJ/mol。根据DSC非等温曲线外推法获得体系的理论固化温度及时间,并依此得到的固化物与原始条件制备的固化物进行力学性能对比,发现影响固化工艺设计的关键因素是温度和时间。研究结果可为环氧树脂灌封料的固化工艺条件设计及实际应用提供理论参考。
Rheological methods,non-isothermal differential scanning calorimetry and in-situ heating Fourier infrared spectroscopy were used to study the curing kinetics of two epoxy resin potting materials,and their curing processes were designed and verified.Using the Kissinger and Flynn-Wall-Ozawa equations,the average apparent activation energies of the two potting materials are calculated to be 70.76 kJ/mol and 61.61 kJ/mol,respectively.According to the DSC non-isothermal curve extrapolation method,the theoretical curing temperature and time of the system were obtained.According to the comparison of the mechanical properties of the cured product obtained with the cured product prepared under the original conditions,it is found that the key factors affecting the design of the curing process are temperature and time.The research results can provide the theoretical guidance for the curing process design and practical application of epoxy encapsulates.
作者
李爱
崔华楠
余清
徐文卿
朱洨易
吕亚栋
安卫军
孔米秋
李光宪
Ai Li;Huanan Cui;Qing Yu;Wenqing Xu;Xiaoyi Zhu;Yadong Lü;Weijun An;Miqiu Kong;Guangxian Li(School of Aeronautics and Astronautics,State Key Laboratory of Polymer Materials Engineering of China,Sichuan University,Chengdu 610065,China;College of Polymer Science and Engineering,State Key Laboratory of Polymer Materials Engineering of China,Sichuan University,Chengdu 610065,China;China Academy of Space Technology,Beijing 100094,China;No.3 Electronic Factory of Chengdu Hongming Electronic Co.,Ltd,Chengdu 510100,China)
出处
《高分子材料科学与工程》
EI
CAS
CSCD
北大核心
2021年第4期105-112,120,共9页
Polymer Materials Science & Engineering
基金
高分子材料工程国家重点实验室自主课题(sklpme2020-3-04)
自然科学基金区域创新发展联合基金(U19A200384)。
关键词
环氧树脂灌封料
固化动力学
固化工艺设计
原位升温傅里叶红外光谱法
epoxy encapsulates
curing kinetics
curing process design
in situ heating Fourier transform infrared spectroscopy