期刊文献+

A New Objective Penalty Function Approach for Solving Constrained Minimax Problems

原文传递
导出
摘要 In this paper,a new objective penalty function approach is proposed for solving minimax programming problems with equality and inequality constraints.This new objective penalty function combines the objective penalty and constraint penalty.By the new objective penalty function,a constrained minimax problem is converted to minimizations of a sequence of continuously differentiable functions with a simple box constraint.One can thus apply any efficient gradient minimization methods to solve the minimizations with box constraint at each step of the sequence.Some relationships between the original constrained minimax problem and the corresponding minimization problems with box constraint are established.Based on these results,an algorithm for finding a global solution of the constrained minimax problems is proposed by integrating the particular structure of minimax problems and its global convergence is proved under some conditions.Furthermore,an algorithm is developed for finding a local solution of the constrained minimax problems,with its convergence proved under certain conditions.Preliminary results of numerical experiments with well-known test problems show that satisfactorilyapproximate solutions for some constrained minimax problems can be obtained.
出处 《Journal of the Operations Research Society of China》 EI 2014年第1期93-108,共16页 中国运筹学会会刊(英文)
基金 This research was supported by Natural Science Foundation of Chongqing(Nos.cstc2013jjB00001 and cstc2011jjA00010) by Chongqing Municipal Education Commission(No.KJ120616).
  • 相关文献

参考文献2

二级参考文献27

  • 1刘树人,孟志青.双参数精确罚函数求解约束优化问题的拟牛顿算法[J].系统工程,2005,23(10):68-72. 被引量:6
  • 2Rosenberg E. Globally convergent algorithm for co,vex programming[J]. Mathmatics of Operations Research, 1981,6(3) :437-452. 被引量:1
  • 3Pinar M C,Zenios S A. On smoothing exact penalty functions for convex constrained optimization[J].SIAM Journal on Optimization, 1994,4:486-511. 被引量:1
  • 4Mongeau M,Sartenaer A. Automatic decrease of the penalty parameter in exact penalty functions methods[J]. European Journal of Operational Research, 1995,83 : 686-699. 被引量:1
  • 5Rubinov A M,Glover B M. Extened Lagrange and penalty functions in continuous optimization[J]. Optimization, 1999,46(3) : 327-351. 被引量:1
  • 6Rubinov A M, Glover B M. Decreasing functions with applications to penalization[J]. SIAM Journal on Optimization, 1999,10(1) :289-313. 被引量:1
  • 7Yang X Q, Huang X X. A nonlinear Lagrange approach to constrained optimization problems[J]. SIAM Journal on optimization, 2001,11 (4):1119-1141. 被引量:1
  • 8Polak E, Mayne D H, Higgins J E. Superlinearly convergent algorithm for min-max problems [J]. Journal of Optimization Theory and Applications, 1991, 69(3) : 407-439. 被引量:1
  • 9Zowe J. Nondifferentiable optimization: a motivation and a short introduction into the subgra- dient and the bundle concept [ C ]//Schittkowski K. Computational Mathematical Program- ming, NATO SAI Series. New York:Springer, 1985. 被引量:1
  • 10DiPillo G, Grippo L, Lucidi S. A smooth method for the finite minimax problem[J]. Mathe-matical Programming, 1993, 60(1/3) : 187-214. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部