期刊文献+

基于多重注意力的金融事件大数据精准画像 被引量:3

Accurate Portrait of Big Data of Financial Events Based on Multiple Attention Mechanism
下载PDF
导出
摘要 随着知识图谱技术的兴起,利用金融事件大数据中的实体关系来构建金融事件的精准画像成为一个重要的研究方向。通过对金融事件大数据信息进行精准画像,人们可以详细分析金融事件大数据中的属性关系,全面了解金融事件的发展态势,从而分析金融市场发展趋势与规律。然而金融事件大数据存在文本数据噪音多、中文语义复杂以及实体关系抽取不准确等研究难点,导致金融事件大数据画像不精准。针对以上问题,提出一种基于多重注意力的金融事件大数据实体关系抽取算法(REMA)来进行实体关系的抽取,然后利用抽取的实体关系信息结合知识图谱技术进行金融事件大数据的精准画像。实验结果表明:在不使用外部资源的情况下,该算法在金融事件大数据中实体关系抽取的准确率、召回率以及F1值比其他对比算法均有所提升,其中准确率提升了5.6个百分点,召回率提升了4.6个百分点,F1值提升了5个百分点。 With the rise of knowledge graph technology,the use of entity relationships in big data of financial event to construct accurate portraits of financial events has become an important research direction.By making accurate portraits of big data information on financial events,people can analyze attribute relationships in big data of financial events in detail,fully understand the development trend of financial events,and thus analyze the trends and laws of financial market development.However,there are many research difficulties in financial event big data,such as large text data noise,complex Chinese semantics,and inaccurate extraction of entity relationships,resulting in inaccurate portraits of financial events.In response to the above problems,this paper proposes a financial event big data entity relationship extraction algorithm based on multiple attention mechanism(REMA)to extract entity relationships,and then uses the extracted entity relationship information combined with knowledge graph technology to perform accurate financial event big data portrait.The experimental results show that the precision,recall and F1-score of the entity relationship extraction in the big data of financial events are improved compared with other comparison algorithms without using external resources.Among them,the improvement of precision is 5.6 percentage points,the improvement of recall is 4.6 percentage points,and the improvement of F1-score is 5 percentage points.
作者 陈剑南 杜军平 薛哲 寇菲菲 CHEN Jiannan;DU Junping;XUE Zhe;KOU Feifei(Beijing Key Lab of Intelligent Telecommunication Software and Multimedia,School of Computer Science,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《计算机科学与探索》 CSCD 北大核心 2021年第7期1237-1244,共8页 Journal of Frontiers of Computer Science and Technology
基金 国家重点研发计划(2018YFB1402600) 国家自然科学基金(61772083,61802028) 广西科技重大专项(桂科AA18118054)。
关键词 金融事件大数据 精准画像 多重注意力机制 实体关系抽取 big data of financial event accurate portrait multiple attention mechanism entity relationship extraction
  • 相关文献

参考文献3

  • 1鄂海红,张文静,肖思琪,程瑞,胡莺夕,周筱松,牛佩晴.深度学习实体关系抽取研究综述[J].软件学报,2019,30(6):1793-1818. 被引量:170
  • 2黄恺瑜..弱监督条件下的实体关系抽取探究[D].北京邮电大学,2018:
  • 3黄济民..基于矩阵分解的无监督实体关系提取方法研究[D].武汉大学,2018:

二级参考文献14

共引文献169

同被引文献45

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部