期刊文献+

基于稳态视觉诱发电位的脑电控制上肢康复机器人 被引量:6

Control of Upper Limb Rehabilitation Robot Based on Steady-state Visual Evoked Potential
下载PDF
导出
摘要 针对现阶段基于脑机接口(brain-computer interface,BCI)的康复机器人存在多目标分类时间长、识别准确率仍有待提升的问题,设计了一种由脑电信号控制的上肢康复机器人,对脑电信号中的稳态视觉诱发电位(steady-state visual evoked potential,SSVEP)分类,进而判断出受试意图并输出相应动作指令。基于MATLAB的Psychtoolbox工具箱设计了包含5个刺激矩形的频闪界面作为视觉刺激器,刺激大脑生成SSVEP信号,对应上肢康复机器人的5个控制指令。运用多导联同步指数(multivariate synchronization index,MSI)算法对采集到的信号进行分类并输出控制指令,机器人在接收指令后执行特定动作。实验得到的机器人动作正确率最佳为98.33%,平均信息传输速率为23.11 bit/min。结果表明:SSVEP信号控制的上肢康复机器人在辅助治疗的方面具有良好的应用前景,可以有效提高肢体偏瘫患者的康复效果。 In order to solve the problems of rehabilitation robots based on brain-computer interface(BCI)at present that long time of multi-target classification and recognition accuracy.An upper limb rehabilitation robot controlled by EEG signals was designed to classify the steady-state visual evoked potential(SSVEP)in the EEG signals,then the intention of the subject and output the corresponding action instruction were judged.Based on MATLAB PsychToolbox,a flicker interface with five stimulus rectangles was designed as a visual stimulator to stimulate the brain to generate SSVEP signals,which corresponding to the five control instructions of the upper limb rehabilitation robot.Multivariate synchronization index(MSI)algorithm was used to classify the collected signals and output control instructions,the robot performed specific action after receiving instruction.Through the experiment,the optimal accuracy of robot action and average information transmission rate were 98.33%and 23.11 bit/min,respectively.The results show that the upper limb rehabilitation robot controlled by SSVEP signal has a good application prospect in aided therapy,it can effectively improve the rehabilitation effect of limb hemiplegia patients.
作者 熊特 胡瑢华 邵杭峰 宋岩 郭福民 XIONG Te;HU Rong-hua;SHAO Hang-feng;SONG Yan;GUO Fu-min(School of Mechanical Engineering,Nanchang University,Nanchang 330031,China)
出处 《科学技术与工程》 北大核心 2021年第17期7237-7242,共6页 Science Technology and Engineering
基金 江西省优势科技创新团队建设计划(20171BCB24001)。
关键词 脑机接口 上肢康复机器人 稳态视觉诱发电位 多导联同步指数 信息传输速率 brain-computer interface upper limb rehabilitation robot steady-state visual evoked potential multi-lead synchronization index information transmission rate
  • 相关文献

参考文献8

二级参考文献26

  • 1高上凯.浅谈脑—机接口的发展现状与挑战[J].中国生物医学工程学报,2007,26(6):801-803. 被引量:70
  • 2Wo|paw J R, Birbaumer N, Heetderks W J, et al. Brain-computer interface technology : a review of the first international meeting. IEEE Transactions on Rehabilitation Engineering, 2000; 8 (2) : 164--173. 被引量:1
  • 3Vaughan T M, Heetderks W J, Trejo L J, et al. Brain-computer in- terface technology: a review of the second international meeting. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of The IEEE Engineering in Medicine and Biology Soci- ety, 2003; 11(2) : 94--109. 被引量:1
  • 4Nijhoh A, Tan D. Brain-computer interfacing for intelligent systems. Intelligent Systems, IEEE, 2008 ; 23 (3) : 72--79. 被引量:1
  • 5Wu Z, Yao D. A study on SSVEP-based BCI. Journal of Electronic Science and Technology of China, 2009 ; 7 ( 1 ) : 7--11. 被引量:1
  • 6Wei Q G, Zou X, Lu Z W, et al. Design and implementation of a mental telephone system based on steady-state visual evoked poten- tial. Journal of Computational Information Systems, 2014 ; 10 ( 2 ) : 547--554. 被引量:1
  • 7Lin Z L, Zhang C S, Wu W, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. Biomedical En- gineering, IEEE Transactions on, 2006 ; 53 (12) : 2610--2614. 被引量:1
  • 8Bin G, Gao X, Yan Z, et al. An online multi-channel SSVEP- based brain-computer interface using a canonical correlation analysis method. Journal of Neural Engineering, 2009; 6(4) :1771--1779. 被引量:1
  • 9李明爱,刘净瑜,郝冬梅.基于改进CSP算法的运动想象脑电信号识别方法[J].中国生物医学工程学报,2009,28(2):161-165. 被引量:38
  • 10邓志东,李修全,郑宽浩,姚文韬.一种基于SSVEP的仿人机器人异步脑机接口控制系统[J].机器人,2011,33(2):129-135. 被引量:16

共引文献42

同被引文献37

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部