期刊文献+

基于A^(*)扩展自适应蚁群算法的移动机器人路径规划 被引量:8

Research on Path Planning of Mobile Robot Based on A-star Extended Adaptive Ant Colony Algorithm
原文传递
导出
摘要 针对传统蚁群算法存在收敛速度慢、搜索效率低等问题,提出一种A^(*)扩展自适应蚁群算法.首先利用A^(*)算法在栅格环境下搜索初始路径,扩展初始路径构建优势区域,优化优势区域的初始信息素,避免蚁群算法在初期陷入盲目搜索;然后在转移概率中引入变向启发函数和参数自适应伪随机比例规则,提升算法搜索效率与收敛速度并淘汰劣质蚂蚁路径;最后采用B样条曲线对路径进行平滑.对比2种栅格环境下的仿真结果可知:所提出的算法能够有效地解决蚁群算法搜索效率低以及收敛速度过慢的问题,同时可以保证搜索路径的质量. An A-star extended adaptive ant colony algorithm was proposed to solve the problems of slow convergence and low search efficiency.Firstly,A-star algorithm was used to search the initial path in grid environment,and the initial path was expanded to build the advantage area,the initial pheromone of the advantage area was optimized to avoid blind search at the initial stage of the algorithm.In order to improve the search efficiency and accelerate the convergence of the algorithm,the transformation heuristic and parameter adaptive pseudo random proportion were introduced to calculate the transformation probability;and the pheromone weights of the high quality ant path were updated adaptively,the inferior ant path was eliminated after ant colony classification was finished based on the average path of each iteration.Finally,B-spline curve was used to smooth the path.By comparing the results of two different grid environments,it was shown that this algorithm ensures the quality of the search path while solving the inefficiency and slowing convergence of ant colony algorithm.
作者 李鹏 何宸宇 刘琪 荣冬成 向宇翔 LI Peng;HE Chenyu;LIU Qi;RONG Dongcheng;XIANG Yuxiang(College of Automation and Electronic Information,Xiangtan University,Xiangtan 411105,China)
出处 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2021年第2期85-92,共8页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 国家自然科学基金资助项目(61773330) 湖南省科技厅重点研发计划项目资助(2018GK2014)。
关键词 移动机器人 蚁群算法 路径规划 栅格法 mobile robot ant colony algorithm path planning grid method
  • 相关文献

参考文献6

二级参考文献30

  • 1于红斌,李孝安.基于栅格法的机器人快速路径规划[J].微电子学与计算机,2005,22(6):98-100. 被引量:63
  • 2田静,黄亚楼,刘作军.基于电路地图的带拖车移动机器人路径搜索[J].机器人,2005,27(6):521-525. 被引量:3
  • 3Derek J Bennet, Colin R McInnes. Distributed control of multirobot systems using bifurcating potential fields[J].Robotics and Autonomous Systems, 2010,58 (3) : 256 - 264. 被引量:1
  • 4Dorigo M, Maniezzo V, Colomi A. Ant system: optimization by a colony of cooperating agent[ J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996,26( 1 ) :29 - 41. 被引量:1
  • 5Lim Kwee Kim, Ong Yew-Soon,Lim Meng Hiot,et al.Hybrid ant colony algorithms for path planning in sparse graphs E J]. Soft Computing, 2008,12(10) :981 - 994. 被引量:1
  • 6Garcia M A Porta, Montiel Oscar, Casfillo Oscar, et al. Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation[ J]. Applied Soft Computing,2009,9(3) : 1102 - 1110. 被引量:1
  • 7Stutzle T, Hoos H H. Max-min ant system and local search for the travelling salesman problem[ A]. IEEE International Conference on Evolutionary Computation[ C ]. Indianapolis: IEEE Press, 1997.309 - 314. 被引量:1
  • 8Botee H M, Bonabeau E. Evolving ant colony optimization [J].Compex System, 1998,1 (2) : 149 - 159. 被引量:1
  • 9BI Xiao-jun,LUO Guang-xin. The improvement of ant colony algorithm based on the inver-over operator[ A]. IEEE International Conference on Mechatronics and Automation [C ]. Harbin: IEEE Press, 2007.2383 - 2387. 被引量:1
  • 10Kennedy J, Eberhart R C. Particle swarm optimization[ A]. IEEE International Conference on Neural Networks [ C ]. Piscataway, NJ: IEEE Press, 1995.1942 - 1948. 被引量:1

共引文献417

同被引文献81

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部