期刊文献+

基于TensorFlow Lite的雏鸡性别鉴别App设计

App Design for Identification of Chicken Sex Based on TensorFlow Lite
下载PDF
导出
摘要 近些年随着机器学习领域的不断发展,在诸多领域都展现出其独特的优势。目前在养鸡业中,雏鸡性别鉴别的方式主要为人工鉴别,鉴别过程需要耗费大量人力物力,且需要鉴别人员拥有丰富的鉴别经验。该文结合机器学习在图像识别方向的发展,将图像识别技术应用于雏鸡性别鉴别,从而解决养鸡行业中雏鸡性别鉴别问题。使用卷积神经网络构建雏鸡性别鉴别模型,并在高识别率的情况下对模型进行压缩,将其转换为Tensorflow Lite模型后,部署到Android App以实现自动鉴别雏鸡公母。同时,在Android App实现了鸡的品种查询、疾病查询等功能。该软件可以降低相关工作人员工作负担,提高鉴别雏鸡公母的效率,有重要的应用价值。 Machine learning,with its continuous development in recent years in fields,its distinctive advance has appeared.At pres⁃ent in chicken culture industry,the chicken sex is identified manually as the main,which costs much in man power and material,and the personnel is required experienced.In the paper,development of machine learning in image identification is combined with the use of technology of image identification into chicken sex identification so as to solve the problem mentioned in chicken indus⁃try:apply Convolutional Neural Network(CNN)to construct chicken sex identification model,and compress the model in condition of high identification rate;transfer the compressed model to TensorFlow Lite model,then deploy the model to Android App for im⁃plementation of automatic identification of chicken sex and functions of enquiry of both chicken variety and disease,etc.This soft⁃ware may be used to reduce relevant man power,improve the efficiency of identical rate of chicken sex,which is of important appli⁃cable value.
作者 韩闰凯 杨晶晶 翟永辉 顾志豪 刘家兴 郭甲倩 HAN Run-kai;YANG Jing-jing;ZHAI Yong-hui;GU Zhi-hao;LIU Jia-xing;GUO Jia-qian(School of Information Science and Engineering,Hebei North University,Zhangjiakou 075000,China)
出处 《电脑知识与技术》 2021年第18期82-85,95,共5页 Computer Knowledge and Technology
基金 基于卷积神经网络的雏鸡翻肛自动鉴别公母的方法研究(项目编号:1911016C-9) 基于卷积神经网络和Android的雏鸡性别鉴别软件(项目编号:S202010092014)。
关键词 雏鸡识别 机器学习 养殖 ANDROID Tensorflow Lite identification 0f chicken sex machine learning culture android TensorFlow Lite
  • 相关文献

参考文献8

二级参考文献21

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部