摘要
采集太原市城区夏季VOCs样品并分析其浓度特征,使用参数修正法得到VOCs初始浓度,分析其来源及对O_(3)生成的贡献.结果显示:太原市城区总VOCs平均浓度为48.13μg/m^(3),烷烃(25.52μg/m^(3))为主要组分.VOCs浓度呈明显日变化特征,在日间(10:00~14:00)光化学产生O_(3)的关键时段浓度最低.油品挥发、机动车排放、燃煤、植物排放与液化石油气/天燃气(LPG/NG)使用源对修正后环境VOCs的贡献分别为26.89%、25.55%、21.14%、14.99%、11.44%,对O_(3)生成的贡献分别为21.44%、33.10%、24.07%、13.77%、7.62%.机动车为新鲜排放气团VOCs的重要来源,而油品挥发、燃煤的输送与本地积累是其他(混合、夜间与反应)气团VOCs的重要来源.机动车排放、油品挥发与燃煤为VOCs与O_(3)生成的重要贡献源,控制此类源排放可减少太原市城区环境VOCs浓度并有效降低O_(3)生成.
Air samples were collected to obtain the observed concentration of VOCs during summertime in the urban area of Taiyuan.A photochemical age-based parameterization method was applied to obtain the initial concentration of VOCs.Then the sources of VOCs were identified and the potential sources of O_(3)were analyzed.The average concentration of total VOCs was 48.13μg/m^(3)with the most abundant group of alkanes(25.52μg/m^(3)).VOCs concentration shows a distinct diurnal variation with the lowest value in the critical time for photochemical reaction during daytime(10:00~14:00).Oil evaporation,vehicle emissions,coal combustion,biogenic emission and liquefied petroleum gas/natural gas(LPG/NG)usage were the major sources of summertime VOCs in urban area of Taiyuan,with the relative contribution of 26.89%,25.55%,21.14%,14.99%,and 11.44%for VOCs sources,while their contributed to the O_(3)production were 21.44%,33.10%,24.07%,13.77%,and 7.62%respectively.Local vehicle exhaust was the main contributor of VOCs in airmass with fresh emission characteristics,while oil evaporation and coal combustion mainly contributed to VOCs in airmasses characterized by mixed,nocturnal,and aged after oxidation reaction through transport and local accumulation.To sum up,vehicle emissions,coal combustion and oil evaporation were the major contributors of ambient VOCs and O_(3)production,while reduction the emissions of these sources can reduce the concentration level of ambient VOCs and effectively alleviate O_(3)production.
作者
李如梅
闫雨龙
王成
徐扬
李颖慧
彭林
LI Ru-mei;YAN Yu-long;WANG Cheng;XU Yang;LI Ying-hui;PENG Lin(Key Laboratory of Resources and Environmental System Optimization,Ministry of Education,College of Environmental Science and Engineering,North China Electric Power University,Beijing 102206,China;School for Energy,Power and Mechanical Engineering,North China Electric Power University,Beijing 102206,China)
出处
《中国环境科学》
EI
CAS
CSCD
北大核心
2021年第6期2515-2525,共11页
China Environmental Science
基金
国家重点研发计划项目(2019YFC0214200)
国家自然科学基金资助项目(21976053,41673004)
大气重污染成因与治理攻关项目(DQGG-05-11)
中央高校基本科研业务费资助项目(2019QN088)。
关键词
挥发性有机物
初始浓度
臭氧
聚类分析
来源解析
volatile organic compounds
initial concentration
O3
clustering analysis
source apportionment