期刊文献+

Optimal Algorithms for Integer Inverse Undesirable p-Median Location Problems on Weighted Extended Star Networks

原文传递
导出
摘要 This paper is concerned with the problem of modifying the edge lengths of a weighted extended star network with n vertices by integer amounts at the minimum total cost subject to be given modification bounds so that a set of p prespecified vertices becomes an undesirable p-median location on the perturbed network.We call this problem as the integer inverse undesirable p-median location model.Exact combinatorial algorithms with O(p2n logn)and O(p2(n logn+n log nmax))running times are proposed for solving the problem under the weighted rectilinear and weighted Chebyshev norms,respectively.Furthermore,it is shown that the problem under the weighted sum-type Hamming distance with uniform modification bounds can be solved in O(p-n log n)time.
出处 《Journal of the Operations Research Society of China》 EI CSCD 2021年第1期99-117,共19页 中国运筹学会会刊(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部