期刊文献+

一种基于栅格投影的快速地面点云分割算法 被引量:4

A Fast Ground Point Cloud Segmentation Algorithm Based on Grid Projection
下载PDF
导出
摘要 针对激光雷达不同类型点云在不同场景下存在地面点云过分割和欠分割的问题,本文提出一种能够适用于不同类型点云的地面分割算法,该算法先将原始点云栅格化,然后计算栅格单元高度差、平均高度和高度方差信息,综合三个分割指标实现地面点云准确快速分割。分别采用KITTI开源数据集和实测数据进行实验验证,结果表明本文算法针对不同类型点云在不同场景下均实现了良好的地面分割效果,平均分割准确度达到99.10%,平均耗时13.1697 ms,提升了自动驾驶汽车感知系统的鲁棒性和实时性能。 Aiming at the problem of over segmentation and under segmentation of ground point clouds in different scenes of LiDAR,a ground segmentation algorithm was proposed in this paper,which was suitable for different types of point clouds.Firstly,the original point cloud was grid,and then the grid cell height difference,average height and height variance information were calculated,and the three segmentation indexes were integrated to realize accurate and fast ground point cloud segmentation.Experiments are carried out using KITTI dataset and measured data.The results show that the algorithm achieves good ground segmentation effect for different types of point clouds in different scenarios.The average segmentation accuracy is 99.10%,and the average time consumption is 13.1697ms,which improves the robustness and real-time performance of the automatic driving vehicle perception system.
作者 邹兵 陈鹏 刘登洪 Zou Bing;Chen Peng;Liu Denghong(Chongqing Survey Institute,Chongqing 401520,China)
机构地区 重庆市勘测院
出处 《城市勘测》 2021年第3期112-116,共5页 Urban Geotechnical Investigation & Surveying
关键词 激光雷达 地面分割 栅格投影 高度方差 实时 LiDAR ground extraction raster projection height variance real time
  • 相关文献

参考文献7

二级参考文献36

  • 1Musialski P, Wonka P, Aliaga D G, et al. A survey of urban reconstruction[J]. Computer graphics forum, 2013, 32(6): 146-177. 被引量:1
  • 2Lin H, Gao J, Zhou Y, et al. Semantic decomposition and reconstruction of residential scenes from lidar data [J]. ACM Transactions on Graphics (TOG), 2013, 32(4) : 66-68. 被引量:1
  • 3Robert J Roy. Mobile lidar for urban streetscapes[EB/ OL]. [2016-02-20]. http://www, gim-interaational. com/issues/articles/idl 865-Mobile_ Lidar_ for Urban _Streetscapes. html. 被引量:1
  • 4Huang J, Menq C H. Automatic data segmentation for geometric feature extraction from unorganized 3-D co- ordinate points [J]. Robotics and Automation, IEEE Transactions on, 2001, 17(3): 268-279. 被引量:1
  • 5Chen J, Chen B. Architectural modeling from sparsely scanned range data[J]. International Journal of Com- puter Vision, 2008, 78(2/3) : 223-236. 被引量:1
  • 6Schnabel R, Wahl R, Klein R. Efficient RANSAC for point-cloud shape detection [C]//Computer graphics forum. Blackwell Publishing Ltd, 2007, 26 (2): 214-226. 被引量:1
  • 7Rusu R B. Semantic 3D object maps for everyday ma- nipulation in human living environments [J]. KI- Ktinstliche Intelligenz, 2010, 24(4): 345-348. 被引量:1
  • 8Anguelov D, Taskarf B, Chatablashv, et al. Discrimina- tive learning of markov random fields for segmentation of 3d scan data[C]//CVPR 2005. USA, San Diego, IEEE,2005, DDI: 10. ll09/CVPR 2005,133. 被引量:1
  • 9Tarabalka Y, Benediktsson J A, Chanussot J, et al. Multiple spectral-spatial classification approach for hy- perspectral data[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2010, 48(11): 4122-4132. 被引量:1
  • 10Rusu R B, Cousins S. 3D is here: point cloud library (pcl) [C]//Robotics and Automation (ICRA), 2011 IEEE International Conference on. China, Shanghai, IEEE, 2011: 1-4. 被引量:1

共引文献80

同被引文献26

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部